Chattopadhyay / Guesmi

Robust AI: Security and Privacy Issues in Machine Learning

Pre-adoption Scrutiny of Security and Privacy Guarantees of AI Algorithms

Springer

ISBN 9789819563616

Standardpreis


ca. 213,99 €

Jetzt vorbestellen! Wir liefern bei Erscheinen (Erscheint vsl. Mai 2026)

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

Fachbuch

Buch. Hardcover

2026

40 Farbabbildungen.

Format (B x L): 15,5 x 23,5 cm

Verlag: Springer

ISBN: 9789819563616

Weiterführende bibliografische Daten

Produktbeschreibung

This book studies in detail the robustness of machine learning (ML) algorithms involved in dealing with vulnerabilities where the errors or malfunctions are both intentional and malicious, therefore being associated with a specific attack model. Reliability is key to the wider adoption of machine learning algorithms in driving regular tasks. There needs to be guaranteed on the success of ML-driven decision-making systems, without errors. It is often seen that an otherwise typically high-performance neural network trained for a specific task, fails under certain circumstances. These vulnerabilities are a key deterrent to reliability and must be addressed before the ubiquitous adoption of AI.

From the machine learning standpoint, this book looks at both critical ingredients, that is the model (neural architecture and its properties) and the training data and from the perspective of Robust AI, the investigation pertains to both Security and Privacy issues. To elaborate on the nomenclature, the Security aspects involve attacks that concern the disruption of the intended machine learning task itself. The Privacy aspect deals with attacks that pertain to leaking sensitive information or IP. A combination of both is necessary to have robust algorithms that can withstand malicious adversaries. The ideas are well described with respect to the available literature and the propositions are studied extensively with many different use cases, on multiple neural architectures and datasets. The content of this book caters to researchers, programmers, engineering, and policymakers who are interested in the implementation of Robust AI and its security and privacy issues in machine learning.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

Europaplatz 3
69115 Heidelberg, DE

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • Produktempfehlungen personalisieren

      Ihre Vorteile:

      • Empfehlungen basierend auf ihren Interessen
      • Zeitersparnis durch passende Vorschläge

      Mehr informationen zu , , und

      Die ersten personalisierten Empfehlungen erhalten Sie nach zwei bis drei Klicks.

      Sie können diese Zustimmung zu einem späteren Zeitpunkt unproblematisch über die Datenschutz-Einstellungen wieder zurückziehen.

      nach oben

      Ihre Daten werden geladen ...