Machine Learning Perspectives of Agent-Based Models
Practical Applications to Economic Crises and Pandemics with Python, R, Netlogo and Julia
ISBN 978-3-031-73354-3
Standardpreis
Bibliografische Daten
eBook. PDF
2025
XX, 377 p. 251 illus., 220 illus. in color..
In englischer Sprache
Umfang: 377 S.
ISBN: 978-3-031-73354-3
Produktbeschreibung
This book provides an overview of agent-based modeling (ABM) and multi-agent systems (MAS), emphasizing their significance in understanding complex economic systems, with a special focus on the emerging properties of heterogeneous agents that cannot be deduced from the characteristics of individual agents. ABM is highlighted as a powerful tool for studying economics, especially in the context of financial crises and pandemics, where traditional models, such as dynamic stochastic general equilibrium (DSGE) models, have proven inadequate.
Containing numerous practical examples and applications with R, Python, Julia and Netlogo, the book explores how learning, particularly machine learning, can be integrated into multi-agent systems to enhance the adaptation and behavior of agents in dynamic environments. It compares different learning approaches, including game theory and artificial intelligence, highlighting the advantages of each in modeling economic phenomena.
Autorinnen und Autoren
Produktsicherheit
Derzeit sind keine Informationen zur Produktsicherheit verfügbar. Wir arbeiten daran, diese Informationen in naher Zukunft für Sie bereitzustellen.