Campesato

Large Language Models for Developers

A Prompt-based Exploration of LLMs

De Gruyter

ISBN 978-1-5015-2095-2

Standardpreis


58,95 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

eBook. ePub

2024

In englischer Sprache

Umfang: 1012 S.

Verlag: De Gruyter

ISBN: 978-1-5015-2095-2

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: MLI Generative AI Series

Produktbeschreibung

This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engineering techniques, fine-tuning methods, attention mechanisms, and quantization strategies to optimize and deploy LLMs. Beginning with an introduction to generative AI, the book explains distinctions between conversational AI and generative models like GPT-4 and BERT, laying the groundwork for prompt engineering (Chapters 2 and 3). Some of the LLMs that are used for generating completions to prompts include Llama-3.1 405B, Llama 3, GPT-4o, Claude 3, Google Gemini, and Meta AI. Readers learn the art of creating effective prompts, covering advanced methods like Chain of Thought (CoT) and Tree of Thought prompts. As the book progresses, it details fine-tuning techniques (Chapters 5 and 6), demonstrating how to customize LLMs for specific tasks through methods like LoRA and QLoRA, and includes Python code samples for hands-on learning. Readers are also introduced to the transformer architecture’s attention mechanism (Chapter 8), with step-by-step guidance on implementing self-attention layers. For developers aiming to optimize LLM performance, the book concludes with quantization techniques (Chapters 9 and 10), exploring strategies like dynamic quantization and probabilistic quantization, which help reduce model size without sacrificing performance.
FEATURES
• Covers the full lifecycle of working with LLMs, from model selection to deployment
• Includes code samples using practical Python code for implementing prompt engineering, fine-tuning, and quantization
• Teaches readers to enhance model efficiency with advanced optimization techniques
• Includes companion files with code and images -- available from the publisher

Autorinnen und Autoren

Produktsicherheit

Hersteller

De Gruyter GmbH

Genthiner Straße 13
10785 Berlin, DE

productsafety@degruyterbrill.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...