Deep Learning Architectures
A Mathematical Approach
Springer Nature Switzerland
ISBN 978-3-030-36721-3
Standardpreis
Bibliografische Daten
eBook. PDF
2020
XXX, 760 p. 207 illus., 35 illus. in color..
In englischer Sprache
Umfang: 760 S.
Verlag: Springer Nature Switzerland
ISBN: 978-3-030-36721-3
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Springer Series in the Data Sciences
Produktbeschreibung
This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.
This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg, DE
ProductSafety@springernature.com