Blum

Construct, Merge, Solve & Adapt

A Hybrid Metaheuristic for Combinatorial Optimization

Springer

ISBN 978-3-031-60102-6

Standardpreis


160,49 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 160,49 €

Bibliografische Daten

Fachbuch

Buch. Hardcover

2024

15 s/w-Abbildungen, 43 Farbabbildungen.

In englischer Sprache

Umfang: xvi, 192 S.

Format (B x L): 15,5 x 23,5 cm

Verlag: Springer

ISBN: 978-3-031-60102-6

Weiterführende bibliografische Daten

auch verfügbar als eBook (PDF) für 160,49 €

Produktbeschreibung

This book describes a general hybrid metaheuristic for combinatorial optimization labeled Construct, Merge, Solve & Adapt (CMSA). The general idea of standard CMSA is the following one. At each iteration, a number of valid solutions to the tackled problem instance are generated in a probabilistic way. Hereby, each of these solutions is composed of a set of solution components. The components found in the generated solutions are then added to an initially empty sub-instance. Next, an exact solver is applied in order to compute the best solution of the sub-instance, which is then used to update the sub-instance provided as input for the next iteration. In this way, the power of exact solvers can be exploited for solving problem instances much too large for a standalone application of the solver. Important research lines on CMSA from recent years are covered in this book. After an introductory chapter about standard CMSA, subsequent chapters cover a self-adaptive CMSA variant as well as a variant equipped with a learning component for improving the quality of the generated solutions over time. Furthermore, on outlining the advantages of using set-covering-based integer linear programming models for sub-instance solving, the author shows how to apply CMSA to problems naturally modelled by non-binary integer linear programming models. The book concludes with a chapter on topics such as the development of a problem-agnostic CMSA and the relation between large neighborhood search and CMSA. Combinatorial optimization problems used in the book as test cases include the minimum dominating set problem, the variable-sized bin packing problem, and an electric vehicle routing problem. The book will be valuable and is intended for researchers, professionals and graduate students working in a wide range of fields, such as combinatorial optimization, algorithmics, metaheuristics, mathematical modeling, evolutionary computing, operations research, artificial intelligence, or statistics.

Autorinnen und Autoren

Kundeninformationen

Introduces CMSA: Construct, Merge, Solve & Adapt as combinatorial optimization algorithm Explains an algorithm combining probabilistic solution construction with an ILP solver Discusses applications to optimization problems such as the minimum dominating set problem

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...