Beh / Lombardo / Clavel

Analysis of Categorical Data from Historical Perspectives

Essays in Honour of Shizuhiko Nishisato

Springer Nature Singapore

ISBN 9789819953295

Standardpreis


203,29 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als Buch (Hardcover) für 213,99 €

Bibliografische Daten

eBook. PDF. Weiches DRM (Wasserzeichen)

2024

XVII, 505 p. 155 illus., 102 illus. in color..

In englischer Sprache

Umfang: 505 S.

Verlag: Springer Nature Singapore

ISBN: 9789819953295

Produktbeschreibung

This collection of essays is in honor of Shizuhiko Nishisato on his 88th birthday and consists of invited contributions only. The book contains essays on the analysis of categorical data, which includes quantification theory, cluster analysis, and other areas of multidimensional data analysis, covering more than half a century of research by the 41 interdisciplinary and international researchers who are contributors. Thus, it offers the wisdom and experience of work past and present and attracts a new generation of researchers to this field. Central to this wisdom and experience is that of Prof. Nishisato, who has spent much of the past 60 years mentoring and providing leadership in the research of quantification theory, especially that of "dual scaling". The book includes contributions by leading researchers who have worked alongside Prof. Nishisato, published with him, been mentored by him, or whose work has been influenced by the research he has undertaken over his illustrious career. This book inspires researchers young and old as it highlights the significant contributions, past and present, that Prof. Nishisato has made in his field.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Libri GmbH

Europaallee 1
36244 Bad Hersfeld, DE

gpsr@libri.de

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • Produktempfehlungen personalisieren

      Ihre Vorteile:

      • Empfehlungen basierend auf ihren Interessen
      • Zeitersparnis durch passende Vorschläge

      Mehr informationen zu , , und

      Die ersten personalisierten Empfehlungen erhalten Sie nach zwei bis drei Klicks.

      Sie können diese Zustimmung zu einem späteren Zeitpunkt unproblematisch über die Datenschutz-Einstellungen wieder zurückziehen.

      nach oben

      Ihre Daten werden geladen ...