Barletta / Dragomir / Shahid

Differential Geometry

Riemannian Geometry and Isometric Immersions (Book I-B)

Springer

ISBN 9789819616305

Standardpreis


160,49 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 149,79 €

Bibliografische Daten

Fachbuch

Buch. Hardcover

2025

10 s/w-Abbildungen, 7 Farbabbildungen.

In englischer Sprache

Umfang: xvi, 591 S.

Format (B x L): 15,5 x 23,5 cm

Verlag: Springer

ISBN: 9789819616305

Produktbeschreibung

This book, Differential Geometry: Riemannian Geometry and Isometric Immersions (Book I-B), is the first in a captivating series of four books presenting a choice of topics, among fundamental and more advanced in differential geometry (DG). Starting with the basics of semi-Riemannian geometry, the book aims to develop the understanding of smooth 1-parameter variations of geodesics of, and correspondingly of, Jacobi fields. A few algebraic aspects required by the treatment of the Riemann–Christoffel four-tensor and sectional curvature are successively presented. Ricci curvature and Einstein manifolds are briefly discussed. The Sasaki metric on the total space of the tangent bundle over a Riemannian manifold is built, and its main properties are investigated. An important integration technique on a Riemannian manifold, related to the geometry of geodesics, is presented for further applications. The other three books of the series are Differential Geometry 1: Manifolds, Bundle and Characteristic Classes (Book I-A) Differential Geometry 3: Foundations of Cauchy-Riemann and Pseudohermitian Geometry (Book I-C) Differential Geometry 4: Advanced Topics in Cauchy–Riemann and Pseudohermitian Geometry (Book I-D) The four books belong to a larger book project (Differential Geometry, Partial Differential Equations, and Mathematical Physics) by the same authors, aiming to demonstrate how certain portions of DG and the theory of partial differential equations apply to general relativity and (quantum) gravity theory. These books supply some of the ad hoc DG machinery yet do not constitute a comprehensive treatise on DG, but rather authors’ choice based on their scientific (mathematical and physical) interests. These are centered around the theory of immersions—isometric, holomorphic, Cauchy–Riemann (CR)—and pseudohermitian geometry, as devised by Sidney Martin Webster for the study of nondegenerate CR structures, themselves a DG manifestation of the tangential CR equations.

Autorinnen und Autoren

Kundeninformationen

Discusses the theory of submanifolds, such as the Gauss and Weingarten formula and the Gauss–Codazzi–Ricci equations Reviews the Calabi’s theorem on elliptic inequalities and Sobolev inequalities in the Euclidean setting Investigates the Sasaki metric on the total space of the tangent bundle over a Riemannian manifold

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...