Federated Learning for Healthcare
Applications with Case Studies
Taylor & Francis Ltd
ISBN 978-1-03-297810-9
Standardpreis
Bibliografische Daten
Buch. Hardcover
2026
70 s/w-Abbildungen, 70 s/w-Zeichnungen, 40 s/w-Tabelle.
Umfang: 296 S.
Format (B x L): 15.6 x 23.4 cm
Gewicht: 453
Verlag: Taylor & Francis Ltd
ISBN: 978-1-03-297810-9
Produktbeschreibung
• A detailed overview of federated learning, its principles, and its relevance to the healthcare sector.
• Insights into how federated learning enhances clinical decision-making, disease prediction, diagnosis, and personalised treatment through decentralised data sources.
• Examination of issues such as communication overhead, model heterogeneity, and data distribution imbalance, with strategies to overcome these challenges.
• Practical examples of successful federated learning implementations in healthcare demonstrate its impact on patient care and operational efficiency.
• Discussions on maintaining data privacy, ensuring compliance with regulations, and addressing ethical concerns.
This book is for researchers, healthcare professionals, data scientists, and policymakers interested in leveraging federated learning to enhance healthcare.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Libri GmbH
Europaallee 1
36244 Bad Hersfeld, DE
gpsr@libri.de
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS
