Aggarwal

Recommender Systems

The Textbook

Springer Nature Switzerland

ISBN 978-3-319-29659-3

Standardpreis


71,68 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

eBook. PDF. Weiches DRM (Wasserzeichen)

2016

XXI, 498 p. 79 illus., 18 illus. in color..

In englischer Sprache

Umfang: 498 S.

Verlag: Springer Nature Switzerland

ISBN: 978-3-319-29659-3

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: Computer Science (R0) Computer Science

Produktbeschreibung

This book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity.  The chapters of this book  are organized into three categories:

- Algorithms and evaluation:  These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation.

- Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored.

- Advanced topics and applications:  Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed.

In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications.

Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors.
About the Author: Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T.J. Watson Research Center in Yorktown Heights, New York. He completed his B.S. from IIT Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996. He has published more than 300 papers in refereed conferences and journals, and has applied for or been granted more than 80 patents. He is author or editor of 15 books, including a textbook on data mining and a comprehensive book on outlier analysis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He has received several internal and external awards, including the EDBT Test-of-Time Award (2014) and the IEEE ICDM Research Contributions Award (2015). He has also served as program or general chair of many major conferences in data mining. He is a fellow of the SIAM, ACM, and the IEEE, for "contributions to knowledge discovery and data mining algorithms."

Autorinnen und Autoren

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

Tiergartenstr. 17
69121 Heidelberg, DE

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • Produktempfehlungen personalisieren

      Ihre Vorteile:

      • Empfehlungen basierend auf ihren Interessen
      • Zeitersparnis durch passende Vorschläge

      Mehr informationen zu , , und

      Die ersten personalisierten Empfehlungen erhalten Sie nach zwei bis drei Klicks.

      Sie können diese Zustimmung zu einem späteren Zeitpunkt unproblematisch über die Datenschutz-Einstellungen wieder zurückziehen.

      nach oben

      Ihre Daten werden geladen ...