Erschienen: 19.01.2019 Abbildung von Yu / He | Deep Reinforcement Learning for Wireless Networks | 2019
eBook

Yu / He

Deep Reinforcement Learning for Wireless Networks

2019. eBook , eBook. PDF

Springer-Verlag GmbH. ISBN 978-3-030-10546-4

In englischer Sprache

Produktbeschreibung

This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme.

There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results..

Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.

Gesamtwerk

Die 8. Auflage ist wieder auf sechs Bände angelegt. Darin finden sich übersichtlich und in systematischer Gliederung Vertragsmuster aus der Feder erfahrener Experten. Jedem dieser Muster folgen Anmerkungen, mit denen der dem Vertragsentwurf zu Grunde liegende Sachverhalt und die Gründe für die Wahl des spezifischen Formulars erläutert werden.

Autoren

  • Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:
      • nach oben

        Ihre Daten werden geladen ...