Erschienen: 05.12.2020 Abbildung von Yan | Computational Methods for Deep Learning | 1. Auflage | 2020 | beck-shop.de

Yan

Computational Methods for Deep Learning

Theoretic, Practice and Applications

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

64,19 €

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 64.19 €

Fachbuch

Buch. Hardcover

1st ed. 2021. 2020

xvii, 134 S. 1 s/w-Abbildung, 22 Farbabbildungen, Bibliographien.

In englischer Sprache

Springer. ISBN 978-3-030-61080-7

Format (B x L): 15,5 x 23,5 cm

Gewicht: 401 g

Das Werk ist Teil der Reihe: Texts in Computer Science

Produktbeschreibung

Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations. Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms. As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers. This book is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision. Dr. Wei Qi Yan is an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title, Visual Cryptography for Image Processing and Security.

Unsere Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Autoren

  • Rezensionen

    Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:
      • nach oben

        Ihre Daten werden geladen ...