Erschienen: 31.12.2002 Abbildung von Poland | Modellgestützte und Evolutionäre Optimierungsverfahren für die Motorentwicklung | 2002

Poland

Modellgestützte und Evolutionäre Optimierungsverfahren für die Motorentwicklung

vergriffen, kein Nachdruck

40,50 €

inkl. Mwst.

2002. Buch. 146 S. Softcover

Logos. ISBN 978-3-8325-0015-3

Format (B x L): 14,5 x 21 cm

Produktbeschreibung

In dieser Arbeit werden Algorithmen für die Modellierung und Optimierung komplexer Systeme vorgestellt und entwickelt, die für den praktischen Einsatz ausgelegt sind. Als Beispielanwendung dient dafür die Kalibrierung moderner Verbrennungsmotoren, die viele Herausforderungen an die Informatik stellt.

Wir beginnen mit einer Darstellung von Techniken für die Modellierung nichtlinearer Systeme, die nur verrauschte Beobachtungen zulassen. Es werden linear parametrierte Regressionsmodelle und nichtlineare Modelle, insbesondere Neuronale Netze, vorgestellt. Dabei werden verschiedene Aspekte wie Training, Regularisierung, Fehlerabschätzung, Active Learning und Bayes'sche Methoden betrachtet. Ferner wird ein neuer Modelltyp entwickelt, das LLR-Modell. Es bietet die Möglichkeit, Polynommodelle niedrigen Grades mit einer höheren Flexitilität auszustatten, ohne dass Oszillationen oder numerische Probleme auftreten.

Die Modellierung bildet die Grundlage für die Entwicklung eines modellbasierten Optimierungsalgorithmus, einen wichtigen Schwerpunkt der Arbeit. Der mbminimize-Algorithmus ist in der Lage, nichtlineare verrauschte Funktionen robust und mit wenig Funktionsauswertungen zu optimieren. Dadurch ist er für den Einsatz als Online-Optimierungsalgorithmus direkt am Motorprüfstand geeignet.

Ein weiteres Thema ist die Evolutionäre Optimierung. Es wird ein Selbstadaptionsmechanismus für Evolutionsstrategien vorgestellt, die Hauptvektoradaption, die von der Kovarianzmatrixadaption abgeleitet ist, jedoch nur linearem Zeit- und Speicherplatzbedarf hat. Weiterhin werden Genetische Algorithmen für kombinatorische Optimierungsprobleme am Beispiel von statistischer Versuchsplanung und Kennfeldglättung betrachtet. Insbesondere die Verwendung d-dimensionaler Chromosomen wird untersucht. Das Problem der Kennfeldglättung wird schließlich komplexitätstheoretisch analysiert.

Alle Algorithmen dieser Arbeit werden auf einer allgemeinen Ebene entwickelt und sind daher auch für andere Anwendungen geeignet. Es wird versucht, in jeder Diskussionen sowohl theoretische Aspekte als auch praktische Fragestellungen aufzunehmen und miteinander zu verknüpfen.

Autoren

  • Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:
      • nach oben

        Ihre Daten werden geladen ...