Ankündigung Erscheint vsl. Januar 2022 Abbildung von Pietsch | On the Epistemology of Data Science | 1. Auflage | 2022 | 148 |


On the Epistemology of Data Science

Conceptual Tools for a New Inductivism

Jetzt vorbestellen! Wir liefern bei Erscheinen (Erscheint vsl. Januar 2022)

ca. 106,99 €

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen


Buch. Hardcover

1st ed. 2022. 2022

xx, 295 S. 1 s/w-Abbildung, Bibliographien.

In englischer Sprache

Springer. ISBN 978-3-030-86441-5

Format (B x L): 15,5 x 23,5 cm

Das Werk ist Teil der Reihe: Philosophical Studies Series; 148


This book addresses controversies concerning the epistemological foundations of data science: Is it a genuine science? Or is data science merely some inferior practice that can at best contribute to the scientific enterprise, but cannot stand on its own? The author proposes a coherent conceptual framework with which these questions can be rigorously addressed. Readers will discover a defense of inductivism and consideration of the arguments against it: an epistemology of data science more or less by definition has to be inductivist, given that data science starts with the data. As an alternative to enumerative approaches, the author endorses Federica Russo’s recent call for a variational rationale in inductive methodology. Chapters then address some of the key concepts of an inductivist methodology including causation, probability and analogy, before outlining an inductivist framework. The inductivist framework is shown to be adequate and useful for an analysis of the epistemological foundations of data science. The author points out that many aspects of the variational rationale are present in algorithms commonly used in data science. Introductions to algorithms and brief case studies of successful data science such as machine translation are included. Data science is located with reference to several crucial distinctions regarding different kinds of scientific practices, including between exploratory and theory-driven experimentation, and between phenomenological and theoretical science. Computer scientists, philosophers and data scientists of various disciplines will find this philosophical perspective and conceptual framework of great interest, especially as a starting point for further in-depth analysis of algorithms used in data science.

Unsere Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte


  • Rezensionen

    Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:
      • nach oben

        Ihre Daten werden geladen ...