Erschienen: 14.05.2014 Abbildung von Paprotny / Thess | Realtime Data Mining | 1st ed. 2013, Corr. 2nd printing 2014 | 2014 | Self-Learning Techniques for R...

Paprotny / Thess

Realtime Data Mining

Self-Learning Techniques for Recommendation Engines

1st ed. 2013, Corr. 2nd printing 2014 2014. Buch. xxiii, 313 S. 12 s/w-Abbildungen, 88 Farbabbildungen, 28 s/w-Tabelle, Bibliographien. Hardcover

Birkhäuser. ISBN 978-3-319-01320-6

Format (B x L): 15,5 x 23,5 cm

Gewicht: 684 g

In englischer Sprache

Das Werk ist Teil der Reihe: Applied and Numerical Harmonic Analysis

Produktbeschreibung

Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data. The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's “classic” data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed.

 

This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.

Autoren

  • Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:
      • nach oben

        Ihre Daten werden geladen ...