Erschienen: 25.08.2016 Abbildung von Murty / Raghava | Support Vector Machines and Perceptrons | 1. Auflage | 2016 | beck-shop.de

Murty / Raghava

Support Vector Machines and Perceptrons

Learning, Optimization, Classification, and Application to Social Networks

lieferbar (3-5 Tage)

58,84 €

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 58.84 €

Fachbuch

Buch. Softcover

1st ed. 2016. 2016

xiii, 95 S. 25 s/w-Abbildungen, Bibliographien.

In englischer Sprache

Springer. ISBN 978-3-319-41062-3

Format (B x L): 15,5 x 23,5 cm

Gewicht: 1825 g

Das Werk ist Teil der Reihe: SpringerBriefs in Computer Science

Produktbeschreibung

This work reviews the state of the art in SVM and perceptron classifiers. A Support Vector Machine (SVM) is easily the most popular tool for dealing with a variety of machine-learning tasks, including classification. SVMs are associated with maximizing the margin between two classes. The concerned optimization problem is a convex optimization guaranteeing a globally optimal solution. The weight vector associated with SVM is obtained by a linear combination of some of the boundary and noisy vectors. Further, when the data are not linearly separable, tuning the coefficient of the regularization term becomes crucial. Even though SVMs have popularized the kernel trick, in most of the practical applications that are high-dimensional, linear SVMs are popularly used. The text examines applications to social and information networks. The work also discusses another popular linear classifier, the perceptron, and compares its performance with that of the SVM in different application areas.>

Top-Produkte dieser Kategorie

Unsere Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Autoren

  • Rezensionen

    Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:
      • nach oben

        Ihre Daten werden geladen ...