Erschienen: 24.04.2001 Abbildung von Moore | Lectures on Seiberg-Witten Invariants | 2nd ed. | 2001 | 1629


Lectures on Seiberg-Witten Invariants

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

2nd ed. 2001. Buch. vIII, 121 S. Bibliographien. Softcover

Springer. ISBN 978-3-540-41221-2

Format (B x L): 15,5 x 23,5 cm

Gewicht: 450 g

In englischer Sprache

Das Werk ist Teil der Reihe: Lecture Notes in Mathematics; 1629


Riemannian, symplectic and complex geometry are often studied by means ofsolutions to systems ofnonlinear differential equations, such as the equa­ tions of geodesics, minimal surfaces, pseudoholomorphic curves and Yang­ Mills connections. For studying such equations, a new unified technology has been developed, involving analysis on infinite-dimensional manifolds. A striking applications of the new technology is Donaldson's theory of "anti-self-dual" connections on SU(2)-bundles over four-manifolds, which applies the Yang-Mills equations from mathematical physics to shed light on the relationship between the classification of topological and smooth four-manifolds. This reverses the expected direction of application from topology to differential equations to mathematical physics. Even though the Yang-Mills equations are only mildly nonlinear, a prodigious amount of nonlinear analysis is necessary to fully understand the properties of the space of solutions. At our present state of knowledge, understanding smooth structures on topological four-manifolds seems to require nonlinear as opposed to linear PDE's. It is therefore quite surprising that there is a set of PDE's which are even less nonlinear than the Yang-Mills equation, but can yield many of the most important results from Donaldson's theory. These are the Seiberg-Witte~ equations. These lecture notes stem from a graduate course given at the University of California in Santa Barbara during the spring quarter of 1995. The objective was to make the Seiberg-Witten approach to Donaldson theory accessible to second-year graduate students who had already taken basic courses in differential geometry and algebraic topology.


Die 8. Auflage ist wieder auf sechs Bände angelegt. Darin finden sich übersichtlich und in systematischer Gliederung Vertragsmuster aus der Feder erfahrener Experten. Jedem dieser Muster folgen Anmerkungen, mit denen der dem Vertragsentwurf zu Grunde liegende Sachverhalt und die Gründe für die Wahl des spezifischen Formulars erläutert werden.


  • Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:
      • nach oben

        Ihre Daten werden geladen ...