Erschienen: 30.11.2018 Abbildung von Goodfellow / Bengio | Deep Learning. Das umfassende Handbuch | 1. Auflage | 2018 | beck-shop.de

Goodfellow / Bengio / Courville

Deep Learning. Das umfassende Handbuch

Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze

sofort lieferbar!

80,00 €

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 69.99 € auch verfügbar als eBook (ePub) für 69.99 €

Fachbuch

Buch. Softcover

2018

ISBN 978-3-95845-700-3

Format (B x L): 16.9 x 23.8 cm

Gewicht: 1535 g

Das Werk ist Teil der Reihe: mitp Professional mitp Business

Produktbeschreibung

  • Mathematische Grundlagen für Machine und Deep Learning
  • Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze
  • Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks

Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen: In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning.

In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt.

In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf.

Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt.

Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning

  • Lineare Algebra
  • Wahrscheinlichkeits- und Informationstheorie
  • Bayessche Statistik
  • Numerische Berechnung

Teil II: Deep-Learning-Verfahren

  • Tiefe Feedforward-Netze
  • Regularisierung
  • Optimierung beim Trainieren tiefer Modelle
  • Convolutional Neural Networks
  • Sequenzmodellierung für Rekurrente und Rekursive Netze
  • Praxisorientierte Methodologie
  • Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache

Teil III: Deep-Learning-Forschung

  • Lineare Faktorenmodelle
  • Autoencoder
  • Representation Learning
  • Probabilistische graphische Modelle
  • Monte-Carlo-Verfahren
  • Die Partitionsfunktion
  • Approximative Inferenz
  • Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Top-Produkte dieser Kategorie

Unsere Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Autoren

  • Rezensionen

    Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:
      • nach oben

        Ihre Daten werden geladen ...