Erschienen: 01.01.1977 Abbildung von Gähler | Grundstrukturen der Analysis I | 1977

Gähler

Grundstrukturen der Analysis I

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

1977. Buch. viii, 412 S. Bibliographien. Softcover

Birkhäuser. ISBN 978-3-7643-0901-5

Format (B x L): 17 x 24,4 cm

Gewicht: 860 g

Produktbeschreibung

In der Monographie wird ein systematischer Aufbau der Analysis unter Be­ nutzung des Limitierungsbegriffs vorgenommen. Insbesondere werden die Theorie der Limesräume und limesuniformen Räume, die limitierte Algebra und die allgemeine Differentialrechnung entwickelt. Die Notwendigkeit, den Topologiebegriff abzuschwächen und ihn durch den - wie sich zeigt - bedeutend leistungsfähigeren Begriff der Limitierung zu ersetzen, ergibt sich bei einer Reihe von Problemen in Abbildungsräumen. Wir führen zwei Beispiele an. Bekanntlich existiert zu topologischen, ja sogar zu separierten topologischen Räumen X und Y im allgemeinen keine gröbste Topologie von C(X, Y), bezüglich der die Evaluationsabbildung w von C(X, Y) X X in Y stetig ist, was zur Folge hat, daß die Kategorien aller topologischen Räume und aller HAusDoRFF-Räume nicht cartesisch abge­ schlossen sind. Es existiert aber stets eine gröbste Limitierung von C(X, Y), bezüglich der w stetig ist, und die Kategorien aller pseudotopologischen und aller separierten pseudotopologischen Räume sind cartesisch abgeschlossen. Nach dem Satz von KELLER-MAISSEN gibt es zu separierten lokalkonvexen topologischen Vektorräumen X und Y nur dann eine Vektorraumtopologie von L(X, Y), bezüglich der die Evaluationsabbildung von L(X, Y) X X in Y stetig ist, wenn X normierbar ist, weshalb zum Beispiel die Kategorien aller topologischen Vektorräume und aller separierten lokalkonvexen topolo­ gischen Vektorräume bezüglich Tensorprodukte keine abgeschlossenen Kate­ gorien bilden. Die Kategorien aller pseudotopologischen Vektorräume und aller in einem engeren Sinne separierten lokalkonvexen pseudotopologischen Vektorräume sind hingegen, als symmetrische monoidale Kategorien bezüglich Tensorprodukte, abgeschlossen.

Gesamtwerk

Die 8. Auflage ist wieder auf sechs Bände angelegt. Darin finden sich übersichtlich und in systematischer Gliederung Vertragsmuster aus der Feder erfahrener Experten. Jedem dieser Muster folgen Anmerkungen, mit denen der dem Vertragsentwurf zu Grunde liegende Sachverhalt und die Gründe für die Wahl des spezifischen Formulars erläutert werden.

Autoren

  • Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:
      • nach oben

        Ihre Daten werden geladen ...