Allergy and the Nervous System

Bearbeitet von
J. Bienenstock, H. Renz

1. Auflage 2012. Buch. XII, 272 S. Hardcover
ISBN 978 3 8055 9984 9
Gewicht: 880 g

Weitere Fachgebiete > Medizin > Klinische und Innere Medizin > Neurologie, Neuropathologie, Klinische Neurowissenschaft

schnell und portofrei erhältlich bei

beck-shop.de
Contents

XI Preface
 Bienenstock, J. (Hamilton, Ont.)

XII References

1 Relations between Asthma and Psychological Distress: An Old Idea Revisited
 Van Lieshout, R.J. (Hamilton, Ont.); MacQueen, G.M. (Calgary, Alta.)
 1 Abstract
 2 Epidemiologic Evidence of the Association between Asthma and Mood and Anxiety Disorders
 3 Mechanisms Underlying the Association between Asthma and Mood and Anxiety Disorders
 4 Familial and Genetic Associations between Asthma and Depression
 5 Hypothalamic Pituitary Adrenal Axis
 6 The Immune System
 7 The Autonomic Nervous System
 8 Examining Psychological Influences on Asthma Using Neuroimaging
 9 Treatment of Psychiatric Symptoms to Improve Asthma and Health-Related Quality of Life
 10 Pharmacologic Treatment
 11 Behavioral Treatment
 12 Conclusions
 13 References

14 The Brain and Asthma: What Are the Linkages?
 Busse, W.W. (Madison, Wisc.)
 14 Abstract
 15 Differences in Acute versus Chronic Stress and Their Potential Role in Asthma
 16 Models in Asthma to Study the Effect of Stress on Airway Inflammation
 17 Socioeconomic Status, Stress and Th2 Expression
 18 Use of Animal Models to Gain Insight to the Effects of Stress on Allergic Inflammation
 19 How Is the Central Nervous System, or Brain, Involved in the Allergic Airway Response in Asthma
 20 and How May this Relate to Stress?
 21 Conclusions
 22 References

32 Stress-Related Programming of Autonomic Imbalance: Role in Allergy and Asthma
 Wright, R.J. (Boston, Mass.)
 32 Abstract
 33 Autonomic Imbalance and Allergy
 34 Pre- and Postnatal Stress and Physiologic Programming
 35 General Stress Paradigm
 36 Perinatal Programming of Autonomic Reactivity
Role of Parasympathetic Nerves and Muscarinic Receptors in Allergy and Asthma
Scott, G.D.; Fryer, A.D. (Portland, Oreg.)

Abstract
Parasympathetic Signaling Controls Organ Functions Relevant to Allergy
General Anatomy and Signaling of the Parasympathetic Nervous System
Parasympathetic Control of the Lung
Muscarinic Receptor Changes on Airway Smooth Muscle
Dysfunctional Parasympathetic Nerve Control of Airway Smooth Muscle
Dysfunctional Parasympathetic Signaling and Airway Hypersecretion
Parasympathetic Nerves and Muscarinic Signaling as Therapeutic Targets for Asthma
Parasympathetic Control of the Nose
Dysfunctional Parasympathetic Signaling Causes Hypersecretion in the Nose
Parasympathetic Dysregulation of Vasodilation and Vascular Permeability
Parasympathetic Nerves and Muscarinic Receptor Signaling as Therapeutic Targets for Allergic Rhinitis
Parasympathetic Control of the Eye
Dysfunctional Parasympathetic Control of Lacrimation
Parasympathetic Control of the Intestine
Parasympathetic Causes of Intestinal Dysmotility
Parasympathetic Nerves and Muscarinic Signaling as Therapeutic Targets for IBS
Parasympathetic Control of the Skin
Role of Parasympathetic Nerves in Inflammation and Disease Progression
Parasympathetic Proinflammatory Signaling, Recruitment, and Cell Adhesion
Involvement of Parasympathetic Nerves in Tissue Remodeling
Concluding Remarks
References

Developmental Programming of Allergic Diseases
Pincus, M. (Berlin); Arck, P. (Hamburg)

Abstract
Life before ‘Life’
Developmental Programming of the Endocrine System
Developmental Programming of the Immune System
Developmental Programming of the Nervous System
Conclusions
References

Mind-Body Interrelationship in DNA Methylation
Szyf, M. (Montreal, Que.)

Abstract
DNA Methylation
DNA Methylation Confers Cell Type Identity on Identical DNA Sequences
DNA Methylation as a Mechanism of Genomewide and Systemwide Genome Adaptation
DNA Methylation Alterations in Response to Early Life Adversity during Gestation
DNA Methylation Responses to Social Adversity after Birth
Broad Response of the DNA Methylation State to Early Life Adversity
The DNA Methylation Response to Early Life Social Adversity Is Not Limited to the Brain and Includes the Immune System as Well
100 Neurotrophins in Chronic Allergic Airway Inflammation and Remodeling
Renz, H.; Kılıç, A. (Marburg)

100 Abstract
101 Neurotrophins: Family Members and Synthesis
101 Neurotrophin Receptors and Basics of Neurotrophin Signaling
103 Neurotrophin Expression in the Lung
105 Neurotrophin Expression in the Immune System
107 Neurotrophins in Atopic Diseases
107 Neurotrophins in Chronic Allergic Airway Inflammation and Remodeling
108 Neurotrophins and Airway Hyperresponsiveness
109 Neurotrophins and Allergic Airway Inflammation
111 Neurotrophins and Airway Remodeling
114 Concluding Remarks
115 References

118 Pathways Underlying Afferent Signaling of Bronchopulmonary Immune Activation to the Central Nervous System
Hale, M.W. (Boulder, Colo./Melbourne); Rook, G.A.W. (London); Lowry, C.A. (Boulder, Colo./Bristol)

118 Abstract
120 Multiple Pathways May Signal Peripheral Immune Activation to the CNS
121 Afferent Innervation of the Lungs and Airways
121 Types of Afferent Fibers Transmitting Signals of Bronchopulmonary Inflammation to the CNS
123 Location of Neuronal Cell Bodies Providing Afferent Innervation of the Airways and Lungs
123 Which Afferent Fiber Pathways Transmit Signals of Inflammation from the Lungs to the CNS?
124 Support for a Role for Afferent Fibers Originating in the Vagal Nodose Ganglia in Mediating Signals of Bronchopulmonary Inflammation
125 Support for a Role for Afferent Fibers Originating in the Vagal Jugular Ganglia in Mediating Signals of Bronchopulmonary Inflammation
126 Support for a Role for Afferent Fibers Originating in the Dorsal Root Ganglia (T1-T6), ‘Sympathetic Afferents’ in Mediating Signals of Inflammation
127 Central Projections of Vagal Afferent Neuronal Fibers
128 Functionally Distinct Vagal Afferent Fibers Have Topographically Organized Projections to the nTS
129 Afferent Projections of the Nodose and Jugular Ganglia Are Topographically Distinct
129 Functional Properties of the Dorsal Lateral Subnucleus of the nTS
130 Functional Properties of the Area Postrema, Medial and Commissural Subnuclei of the nTS
130 Potential Mechanisms for Activation of Bronchopulmonary Afferent Neurons by Local Inflammatory Stimuli
130 Aorticopulmonary Bodies (‘Paraganglia’)
131 Intrapulmonary Peribronchial Ganglia (‘Microparaganglia’)
132 Diffuse Neuroendocrine System of the Lung (Neuroepithelial Endocrine Cells and Neuroepithelial Bodies)
133 NECs and NEBs and ‘Neurogenic Inflammation’
134 Vascular Changes Associated with ‘Neurogenic Inflammation’ May Increase the Accessibility of the Lung and Airways Compartments to Leukocytes
135 Conclusions
135 Acknowledgements
135 References

142 Allergen-Induced Neuromodulation in the Respiratory Tract
Weigand, L.A.; Undem, B.J. (Baltimore, Md.)

142 Abstract
143 Neurobiology of the Respiratory Tract
143 Sensory Afferent Innervation of the Respiratory Tract
144 Autonomic Efferent Innervation of the Respiratory Tract
144 Parasympathetic
145 Sympathetic
145 Axon Reflexes and Peripheral Reflexes
145 Allergen-Induced Neuromodulation
146 Allergen-Induced Afferent Neuromodulation
146 Acute Activation of Afferent Nerves
149 Acute Increases in Electrical Excitability of Afferent Airway Nerves
150 Allergen-Induced Sensory Neuroplasticity
152 Allergic Neuromodulation in the CNS
154 Allergic Neuromodulation of Efferent (Autonomic) Nerves
154 Acute Activation and Increases in Parasympathetic Nerve Excitability
154 Allergen-Induced Neuroplasticity in the Parasympathetic Nerves
155 Clinical Allergy and the Neural Hypersensitive State
157 Conclusions
157 References

163 Role of Microbiome in Regulating the HPA Axis and Its Relevance to Allergy
Sudo, N. (Fukuoka)

163 Abstract
164 HPA Axis Sensitivity to Stress Is Determined by Early-Life Environmental Factors
164 Normal Functioning of the HPA Axis is Necessary for Diminishing Ongoing Allergic Reactions
166 Gut Microbiota Play a Critical Role in Determining the Setpoint of the HPA Axis
169 Brain Network Recognizes Signaling of Microbial Colonization in Gut and Elicits Transient Increases in Plasma Corticosterone Levels
170 Possible Gut Microbe-Derived Neurotransmitters and Gases Involved in Microbiome-Brain Signaling
172 Epigenetics May Be a Key Mechanism Explaining the Modification of the HPA Axis by the Microbiome
173 Conclusion and Perspectives
174 References

176 Autonomic Regulation of Anti-Inflammatory Activities from Salivary Glands
Mathison, R.D.; Davison, J.S. (Calgary, Alta.); St. Laurent, C.D.; Befus, A.D. (Edmonton, Alta.)

176 Abstract
178 Cervical Sympathetic Trunk-Submandibular Gland Axis
180 Innervation of the Submandibular Glands
181 Submandibular Glands
181 Submandibular Rat-1 Protein, Its Derivatives and Human Homologues
181 Submandibular Gland Peptide T (SGP-T)
183 A Human Homologue of Sialorphin – Opiorphin
183 Human Homologues of SGP-T
185 Other Salivary Anti-inflammatory Peptides
185 Biological Activities of FEG and Its Derivatives
186 Cellular Mechanism of Action of SGP-T and feG
186 Genomics of SMR1 and its Homologues
187 Autonomic Control of Salivary Gland Endocrine Secretion
188 CST-SMG Axis in Humans
190 Conclusions
190 References

196 The Mast Cell-Nerve Functional Unit: A Key Component of Physiologic and Pathophysiologic Responses
Forsythe, P.; Bienenstock, J. (Hamilton, Ont.)

196 Abstract
196 Mast Cells
198 Molecules Involved in Mast Cell Nerve Attachments
199 Nerve Growth Factor
200 Sensory Neuropeptides
200 Substance P and the Functional Relationship between Neurons and Mast Cells
202 CGRP
203 Vasoactive Intestinal Peptide
203 Cholinergic Neurons
205 Mast Cell-Nerve Interaction in the Physiology and Pathophysiology of Specific Tissues
205 Skin
207 The Gastrointestinal Tract
209 Lung
211 Urinary Tract
212 The Brain
214 Conclusions
214 References

222 Neural and Behavioral Correlates of Food Allergy
Costa-Pinto, F.A.; Basso, A.S. (Sao Paulo)

222 Abstract
223 Review of Clinical Findings
226 Enter Experimental Neuroimmunomodulation
227 Analyzing the Behavior of Allergic Mice
227 Two-Bottle Preference Test: Allergic Mice Develop Food Aversion
229 Oral Antigen Challenge Elicits Anxiety-Like Behavior in Allergic Mice
229 Allergic Response Triggers Activation of Emotionality-Related Brain Areas
231 Signaling Allergy to the Mouse Brain
231 Role of Antibodies and Mast Cells
233 Neural Pathways Involved in Food Allergy Signaling to the Mouse Brain: Role of Type C-Sensitive Fibers
235 Current Approaches and Future Perspectives
236 References

240 The Neuroendocrine-Immune Connection Regulates Chronic Inflammatory Disease in Allergy
Peters, E.M.J. (Berlin/Giessen)

240 Abstract
241 Neuroanatomy of the Skin: A Key to Understand Neuroendocrine-Immune Interactions in Peripheral Tissues
242 Neuroendocrine Immune Interaction in the Epidermis Involves Structural and Functional Cells Regulating Barrier Function and Antigen Presentation
244 Deeper Skin Structures Are Characterized by Prominent Innate Neuroendocrine Immune Regulation
246 Disease Pathology in Allergic Inflammation Is an Instructive Model for Misguided Neuroendocrine Stress Responses
248 Conclusion
249 References

253 Itch and the Brain
Pfab, F. (Boston, Mass./Munich); Valet, M. (Munich); Napadow, V. (Boston, Mass.); Tölle, T.-R.; Behrendt, H.; Ring, J.; Darsow, U. (Munich)

253 Abstract
254 Neuroimaging of Itch by Positron Emission Tomography
255 New Methodology Enabling Itch Measurement by Functional MRI
257 Cerebral Processing of Histamine-Induced Itch Using Short-Term Alternating Temperature Modulation – An fMRI Study
257 Further Neuroimaging Studies in Healthy Volunteers
Preface

Until a few decades ago, many allergic manifestations were largely regarded as being psychosomatic in origin. This was particularly thought to apply to asthma even though it had been demonstrated that skin allergic reactions could be adoptively transferred from one patient to another with serum in the famous Prausnitz-Kustner reaction [1]. The identification of the role of mast cells in allergy and their content of histamine helped to emphasize the biological nature of allergic reactions [2], and this was finally resolved with the identification of IgE as the key antibody responsible in mice by Ishizaka and Ishizaka [3]. The final confirmation that this not only applied to rodents but also humans in the clinical setting, came with the discovery of a human IgE equivalent by Johansson and Bennich [4].

The subsequent identification that asthma was an inflammatory disease [5], as with many discoveries in medicine, really engendered a paradigm shift away from a consideration of the role of the brain and nervous system in allergy and especially in asthma. In recent times it has become increasingly clear that the immune and nervous systems are integrated and that constant bidirectional communication is occurring between them, and the term psychoneuroimmunology has been used to describe this [6]. Most immune cells possess receptors for neurotransmitters and neurotrophic factors, and indeed also have the capacity to synthesize many of them. That the brain is often involved in modulating inflammation and immune activity has now been well described in the literature, and we showed some time ago that it was possible to condition mast cells to degranulate using a Pavlovian conditioning model [7]. More recently, the potential role of chronic stress in allergic disease has been identified and raises the important question of the role of psychosocial circumstances as determinants of various allergic conditions.

The mechanisms and pathways whereby the nervous system may be involved in beneficial or detrimental outcomes in allergy are still somewhat obscure, but new light is being shed on this complex biology through technological and conceptual advances. These include magnetic resonance imaging of the brain and epigenetics. The chapters in this book cover many but not all aspects of the potential and actual role of the nervous system in the modulation of allergy, and our hope is that they
may help restore some balance in our thinking about allergic disease and offer a more holistic approach to its understanding and treatment.

John Bienenstock

References