Schrödinger Equations and Diffusion Theory

Bearbeitet von
Masao Nagasawa

1993 2012. Taschenbuch. xii, 319 S. Paperback
ISBN 978 3 0348 0559 9
Format (B x L): 15,5 x 23,5 cm
Gewicht: 510 g

Weitere Fachgebiete > Physik, Astronomie > Quantenphysik

schnell und portofrei erhältlich bei

beck-shop.de
DIE FACHBUCHHANDLUNG

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
Preface

Since Max Born's "statistical interpretation of wave functions" proposed in 1926, there has been the long-standing problem of "interpretation of Schrödinger equations". However, the emphasis should not be on "interpretation": The right problem to set is

"What is the Schrödinger equation?"

This monograph is devoted to an attempt to give an answer to the problem in terms of diffusion theory, namely, in terms of diffusion processes, and it will be shown that the Schrödinger equation and diffusion equations in duality are equivalent. As a result, Schrödinger's conjecture of 1931 will be solved.

The equivalence of Schrödinger and diffusion equations implies that, roughly speaking, if we add (Brownian) noise and specific additional drift to a "classical particle" then we get the movement of a "quantum particle". It must be emphasized that the quantum particle (= diffusion particle) has its well-defined position but no velocity, and hence it is not at all a "classical particle" any more. Therefore, we must look at it carefully in the context of diffusion theory. Moreover, the theory of diffusion processes for the Schrödinger equation will tell us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles.

The contents of the monograph are based on my lectures on diffusion theory (mathematics, not physics) which have been given at various places including Tokyo Institute of Technology, Aarhus University, University of Erlangen, Keio University, University of California at San Diego, and the main part of them at the University of Zürich in the last decade.

This monograph may be regarded as "An Introduction to the Theory of Diffusion Processes with Applications". There will be no difficulty in reading Chapters 2, 3 and 4 for those who have an elementary knowledge of PDE and diffusion processes, and some fundamentals of functional analysis including measure theory. Those who would like to learn in a hurry the equivalence of Schrödinger and diffusion equations and its implications can
read Chapter 4 directly, possibly referring to the necessary pages of Chapters 2 and 3. For Chapters 5 and 6, readers are assumed to have slightly more advanced experience in diffusion processes and perhaps some patience, since they contain delicate analysis in connection with the singularity of coefficients of diffusion equations. For Chapters 7 and 8, I have to assume that readers have some elementary knowledge of and intuition for statistical mechanics and more maturity in mathematical experience. Some applications in biology and physics will be given in Chapter 9. Chapters 10 and 11 offer a self-contained exposition on relative entropy and large deviations, needed in Chapters 5 and 8. Non-linearity induced by the branching property will be briefly explained in Chapter 12.

The text is practically self-contained and proofs are given for all theorems except for some proofs in Chapter 7 which are left in the original articles so that the monograph is kept to a reasonable size.

Acknowledgements. I am indebted to my old friends Hiroshi Tanaka, with whom I enjoyed collaboration and discussions on the subject during the last decade, and Hans Föllmer, with whom I jointly organized the "Zürich Seminar on Stochastic Processes" during the decade 1970-1980's. Their important contributions to the subject of the monograph will be seen in many chapters. It is my pleasure to thank those who offered useful comments on the first drafts, in particular, Herbert Amann, Andrew Barbour, Erwin Bolthausen, Nobuyuki Ikeda, Paul-André Meyer, Kohei Uchiyama, Marc Yor, and the audiences at my lectures. Moreover, I would like to thank Robert Aebi who read the drafts at various stages and suggested necessary corrections and improvements. Finally, many thanks to Eiko Nagasawa with whom in the course of discussion I have learned a great deal, which has enabled me to make the exposition clearer; in particular, I have followed her suggestion that it was absolutely necessary to write Section 4.8 on the superposition principle.

Zürich, January 1993

Masao Nagasawa

---

*Supported by the Swiss National Foundation (21-29833.90) and European Community (Science Plan, Project "Evolutionary Systems")*