The Life and Death of Stars

In this well-illustrated text, Kenneth R. Lang explains the life cycle of stars, from the dense molecular clouds that are stellar nurseries to the enigmatic nebulae that some stars leave behind in their violent ends. Free of mathematical equations and technical jargon, Lang’s lively and accessible text provides physical insights into how stars such as our Sun are born, what fuels them and keeps them bright, how they evolve, and the processes by which they eventually die. The book demonstrates the sheer scope and variety of stellar phenomena in the context of the universe as a whole. Boxed focus elements enhance and amplify the discussion for readers who want more depth. Featuring more than 150 figures, including color plates, The Life and Death of Stars is a modern and up-to-date account of stars written for a broad audience, from armchair astronomers and popular-science readers to students and teachers of science.

The Life and Death of Stars

Kenneth R. Lang
Tufts University, Massachusetts
Contents

List of Focus Elements page ix
List of Tables xi
Preface xiii

1 **Light of the Sun** 1
1.1 Ultimate Power 1
1.2 The Closest Star 2
1.3 Waves of Light 5
1.4 Invisible Rays 7
1.5 The Radiation Energy of the Sun 8
1.6 The Size and Temperature of the Sun’s Visible Disk 9
1.7 Thermal Radiation 10
1.8 The Energy of Light 12
1.9 Observing the Radiation 13

2 **Gravity and Motion** 18
2.1 Wanderers in the Sky 18
2.2 Gravitational Attraction 20
2.3 Tidal Forces 23
2.4 Motion Holds Up the Planets 27
2.5 The Massive Sun 27
2.6 What Causes Gravity? 28

3 **Atomic and Subatomic Particles** 31
3.1 Inside the Atom 31
3.2 Heat, Motion, and Pressure 35
3.3 The Density and the Temperature within the Sun 40
3.4 What Is the Sun Made Of? 42
3.5 Quantization of Atomic Systems 49
3.6 Excited Atoms 52
3.7 Ionization and Element Abundance in the Sun and Other Stars 52
3.8 Altering Spectral Lines 54
Contents

4 Transmutation of the Elements 58
 4.1 Things That Glow in the Dark 58
 4.2 Radioactivity 60
 4.3 Tunneling out of the Nuclear Prison 62
 4.4 The Electron and the Neutrino 64
 4.5 Particles from Outer Space 66
 4.6 Nuclear Alchemy and Atomic Bombs 70

5 What Makes the Sun Shine? 76
 5.1 Awesome Power, Enormous Times 76
 5.2 How Hot Is the Center of the Sun? 77
 5.3 Nuclear Fusion in the Sun’s Core 78
 5.4 Catching the Ghost 86
 5.5 How the Energy Gets Out 91
 5.6 Looking Inside the Sun 94
 5.7 The Faint-Young-Sun Paradox 98
 5.8 When the Sun Dies 99

6 The Extended Solar Atmosphere 102
 6.1 Hot, Volatile, Magnetized Gas 102
 6.2 The Sun’s Varying Winds 112
 6.3 Explosions on the Sun 116
 6.4 Space Weather 118

7 Comparisons of the Sun with Other Stars 128
 7.1 Where and When Can the Stars Be Seen? 128
 7.2 How Far Away Are the Stars? 132
 7.3 How Bright and Luminous Are the Stars? 134
 7.4 How Hot Are the Stars? 137
 7.5 How Big Are the Stars? 140
 7.6 How Massive Are the Stars? 143
 7.7 Motions of the Stars 146

8 The Lives of Stars 157
 8.1 Main-Sequence and Giant Stars 157
 8.2 Nuclear Reactions Inside Stars 165
 8.3 Using Star Clusters to Watch How Stars Evolve 174
 8.4 Where Did the Chemical Elements Come From? 178

9 The Material Between the Stars 186
 9.1 Bright Stars Light Up Their Surroundings 186
 9.2 Dark Places Filled with Dust 191
 9.3 Interstellar Radio Signals 195
 9.4 Cold, Rarefied Hydrogen Atoms Between the Stars 197
 9.5 Molecular Cocktails in a Smoky Room 199
10 New Stars Arise from the Darkness 201
10.1 How the Solar System Came into Being 201
10.2 Star Birth 204
10.3 Planet-Forming Disks and Planets around Nearby Stars 210

11 Stellar End States 219
11.1 A Range of Destinies 219
11.2 The Winds of Death 220
11.3 Stars the Size of the Earth 225
11.4 Crushed States of Matter 230
11.5 Stars That Blow Up 233
11.6 Expanding Remnants of Shattered Stars 244
11.7 Neutron Stars and Pulsars 249
11.8 Stellar Black Holes 256

12 A Larger, Expanding Universe 259
12.1 Where Does the Milky Way End and How Does It Move? 259
12.2 Out Beyond the Stars 269
12.3 The Universe Is Expanding 274
12.4 The Cosmic Web 277

13 Birth, Life, and Death of the Universe 287
13.1 Hotter Than Anything Else 287
13.2 Three Degrees above Absolute Zero 287
13.3 The Beginning of the Observable Universe 292
13.4 When Galaxies Formed and the First Stars Began 295
13.5 How Did It All Begin? 305
13.6 When Stars Cease to Shine 308

Quotation References 313
Author Index 317
Subject Index 321
Focus Elements

1.1 Distance of the Sun .. 3
1.2 Light, the Fastest Thing Around 6
2.1 Weighing the World ... 22
2.2 Longer Days, the Retreating Moon, and Planetary Rings 25
3.1 Density, Pressure, and Temperature of the Earth’s Atmosphere ... 40
3.2 Hydrogen Is the Most Abundant Element in the Sun and Most Other Stars ... 54
4.1 Charged Particles Avoid Magnetic Fields 59
4.2 Nuclear Nomenclatures ... 62
6.1 Looking into and Beneath Sunspots 105
6.2 Discovery of the Solar Wind 112
7.1 The Locations of the Stars Are Slowly Changing 131
8.1 The Proton-Proton Chain 168
8.2 The CNO Cycle ... 169
11.1 Gravitational Waves from a Binary Radio Pulsar 253
12.1 Cepheid Variable Stars 262
13.1 How Old Is the Universe? 296
Tables

1.1. Approximate wavelengths of the colors
3.1. Physical properties of the electron, proton, neutron, and atom
3.2. Range of temperatures
3.3. Range of pressures
3.4. Prominent absorption lines and elements detected in sunlight
3.5. The five most abundant elements in the solar photosphere
3.6. Cosmic magnetic fields
5.1. Physical properties of the Sun
5.2. Differential rotation of the Sun
6.1. Strong coronal forbidden emission lines
6.2. Mean values of solar-wind parameters at the Earth’s orbit
7.1. The 10 brightest stars as seen from the Earth
7.2. Apparent visual magnitudes, m, of a few bright astronomical objects
7.3. The range in stellar luminosity
7.4. The spectral classification of stars
7.5. Some well-known large stars
7.6. Stars with the highest proper motion
7.7. Physical properties of star clusters
7.8. Rotation periods and rotation velocities of some planets and stars
8.1. The Morgan–Keenan, abbreviated M–K, luminosity classes
8.2. The main-sequence stars
8.3. Nuclear-fusion processes in a supergiant star of 25 solar masses
9.1. Bright named emission nebulae
9.2. Intense spectral lines of emission nebulae
9.3. Physical properties of emission nebulae (H II regions)
9.4. Physical properties of H I regions of interstellar atomic hydrogen
10.1. Physical properties of giant molecular clouds
10.2. Stars with an excess of infrared radiation detected from the IRAS satellite
11.1. Representative mass, radius, and mean mass density of the stars
11.2. Physical properties of planetary nebulae
11.3. Bright named planetary nebulae
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.</td>
<td>Physical properties of white dwarf stars</td>
<td>230</td>
</tr>
<tr>
<td>11.5.</td>
<td>Physical properties of some novae</td>
<td>234</td>
</tr>
<tr>
<td>11.6.</td>
<td>Historical supernovae visible to the unaided eye</td>
<td>237</td>
</tr>
<tr>
<td>11.7.</td>
<td>Characteristics of supernova types</td>
<td>238</td>
</tr>
<tr>
<td>11.8.</td>
<td>Supernova SN 1987A</td>
<td>243</td>
</tr>
<tr>
<td>11.9.</td>
<td>The Crab Nebula supernova remnant</td>
<td>248</td>
</tr>
<tr>
<td>11.10.</td>
<td>Physical properties of neutron stars</td>
<td>250</td>
</tr>
<tr>
<td>12.1.</td>
<td>Physical properties of the Milky Way disk</td>
<td>264</td>
</tr>
<tr>
<td>12.2.</td>
<td>Physical properties of galaxies</td>
<td>278</td>
</tr>
<tr>
<td>12.3.</td>
<td>Physical properties of rich clusters of galaxies</td>
<td>279</td>
</tr>
<tr>
<td>13.1.</td>
<td>Physical properties of the cosmic microwave background radiation</td>
<td>291</td>
</tr>
<tr>
<td>13.2.</td>
<td>Cosmological parameters</td>
<td>293</td>
</tr>
<tr>
<td>13.3.</td>
<td>Crucial times during the expansion of the universe</td>
<td>295</td>
</tr>
</tbody>
</table>
Preface

How did the Sun and other stars come into being, what keeps them hot and makes them shine, how do they change with time, and what will be their ultimate fate? These are questions of interest to people of all ages; this book, *The Life and Death of Stars*, provides a lively and comfortably accessible account of them.

It begins with a discussion of radiation, which carries a message from the stars and tells us just about everything we know about them. The text continues with a description of gravity, which rules the universe, and the motion that holds everything up. We then take a voyage inside the atom to discover the subatomic particles that govern how energy is liberated inside stars, including the related topic of radioactive transformation of the elements. Heat, temperature, and pressure also are vital to our understanding of the interiors of the stars and their birth, growth, and decay.

These fundamental physical concepts provide the foundation for what follows, which is the approach that George Gamow used more than a half-century ago in his classic account of *The Birth and Death of the Sun*. This book made a tremendous impression and inspired an entire generation, but many of its conclusions are completely out of date. Although consistent with what was known at the time, subsequent improvements in our knowledge have shown that Gamow was misled about the dominant nuclear reactions in the Sun, the course of stellar evolution, and the origin of the elements. However, he had a marvelous physical insight and applied fundamental physics to our understanding of the Sun, without an equation in sight.

This book, *The Life and Death of Stars*, is written in a light and friendly style that can be appreciated by all readers, without being unnecessarily weighed down by specialized material, scientific jargon, or mathematical equations. Throughout this book, the basic concepts are translated into a common language with apt, down-to-earth metaphors and analogies, making them accessible to general readers and adding to the material. The text also is humanized with historical anecdotes about significant contributors to our celestial science.

Separate focus elements enhance and amplify the discussion with interesting details. Vital facts and physical information are presented in numerous tables. The focus elements and tables will be read or used by an especially curious person or serious student; however, they do not interfere with the general flow of the text and can be bypassed by readers who want to follow the main ideas.
Preface

There also are excellent line drawings, prepared by Kacha Bradonjich, and stunning images from the ground and space that help cement our newfound knowledge. They help crystallize a new concept with a visual excitement that adds another dimension to our understanding.

The book provides a comprehensive account of the enormous recent advances in our detailed understanding of the Sun using instruments aboard spacecraft. Sound waves have been used to peer deep within the Sun, and invisible x-rays have been employed to investigate its million-degree outer atmosphere. The mismatch between the observed and expected amounts of the ghostlike neutrinos has been resolved using massive underground detectors. These results all serve to confirm and embellish our understanding of how energy is generated by nuclear reactions at the center of the Sun and transported to its glowing disk that warms our ground, lights our days, and sustains life on the Earth. The Life and Death of Stars also describes how explosions on the Sun and powerful gusts in its supersonic winds interact with our planet, threatening humans and satellites in nearby space.

In the past few decades, our knowledge of all the other stars also has expanded enormously. The book portrays the tremendous range in how bright, luminous, hot, big, and massive the stars are. It also describes the nuclear reactions that keep different stars hot and luminous and how this is related to their growth and transformation. We place the Sun within this story of stellar lives and demonstrate how the life and death of former stars, which lived and died before the Sun was born, resulted in the creation of elements required for the very existence of the Earth and people living on it.

Star birth and death are continuing before our very eyes. We can see how new stars arise from interstellar material and detect planets around those nearby. Stellar destinies are just as fascinating, for dying stars do not simply disappear. They are reborn in another form, as white dwarfs, neutron stars, or black holes.

This brings The Life and Death of Stars to the larger questions of what lies beyond the stars and how the first stars began. Here, the book provides a concise account of the observable universe, which was propelled into expansion by “the big bang.” We are still immersed within its background radiation, which is now being scrutinized with instruments aboard spacecraft. The text then wonders how it all began and explores the ultimate destiny of the stars, when they all will cease to shine.

This book tells a story of discovery and the wonderful, exciting diversity of the stellar universe. It is an amazing collective portrait of birth, transformation, decay, and rebirth. The Life and Death of Stars also provides for readers the background needed for a greater understanding and appreciation of those inevitable, currently unknown, celestial discoveries that will unfold during their lifetime.

The author also writes more advanced texts that include mathematical equations and references to original research papers and comprehensive up-to-date reviews. For this complementary approach, the reader is referred to Essential Astrophysics (New York: Springer, 2013).

Special gratitude is extended to my friend and neighbor Paul Strauss for his encouragement and careful reading of the page proof.

Kenneth R. Lang
Tufts University
November 16, 2012