A Student’s Guide to Geophysical Equations

The advent of accessible student computing packages has meant that geophysics students can now easily manipulate datasets and gain first-hand modeling experience – essential in developing an intuitive understanding of the physics of the Earth. Yet to gain a more in-depth understanding of the physical theory, and to be able to develop new models and solutions, it is necessary to be able to derive the relevant equations from first principles.

This compact, handy book fills a gap left by most modern geophysics textbooks, which generally do not have space to derive all of the important formulae, showing the intermediate steps. This guide presents full derivations for the classical equations of gravitation, gravity, tides, Earth rotation, heat, geomagnetism, and foundational seismology, illustrated with simple schematic diagrams. It supports students through the successive steps and explains the logical sequence of a derivation – facilitating self-study and helping students to tackle homework exercises and prepare for exams.

WILLIAM LOWRIE was born in Hawick, Scotland, and attended the University of Edinburgh, where he graduated in 1960 with first-class honors in physics. He achieved a masters degree in geophysics at the University of Toronto and, in 1967, a doctorate at the University of Pittsburgh. After two years in the research laboratory of Gulf Oil Company he became a researcher at the Lamont-Doherty Geological Observatory of Columbia University. In 1974 he was elected professor of geophysics at the ETH Zürich (Swiss Federal Institute of Technology in Zurich), Switzerland, where he taught and researched until retirement in 2004. His research in rock magnetism and paleomagnetism consisted of deducing the Earth’s magnetic field in the geological past from the magnetizations of dated rocks. The results were applied to the solution of geologic-tectonic problems, and to analysis of the polarity history of the geomagnetic field. Professor Lowrie has authored 135 scientific articles and a second edition of his acclaimed 1997 textbook *Fundamentals of Geophysics* was published in 2007. He has been President of the European Union of Geosciences (1987–9) and Section President and Council member of the American Geophysical Union (2000–2). He is a Fellow of the American Geophysical Union and a Member of the Academia Europaea.
A Student’s Guide
to Geophysical Equations

WILLIAM LOWRIE
Institute of Geophysics
Swiss Federal Institute of Technology
Zurich, Switzerland
This book is dedicated to Marcia
## Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 Mathematical background

1.1 Cartesian and spherical coordinates

1.2 Complex numbers

1.3 Vector relationships

1.4 Matrices and tensors

1.5 Conservative force, field, and potential

1.6 The divergence theorem (Gauss’s theorem)

1.7 The curl theorem (Stokes’ theorem)

1.8 Poisson’s equation

1.9 Laplace’s equation

1.10 Power series

1.11 Leibniz’s rule

1.12 Legendre polynomials

1.13 The Legendre differential equation

1.14 Rodrigues’ formula

1.15 Associated Legendre polynomials

1.16 Spherical harmonic functions

1.17 Fourier series, Fourier integrals, and Fourier transforms

Further reading

2 Gravitation

2.1 Gravitational acceleration and potential

2.2 Kepler’s laws of planetary motion

2.3 Gravitational acceleration and the potential of a solid sphere

2.4 Laplace’s equation in spherical polar coordinates

2.5 MacCullagh’s formula for the gravitational potential

Further reading

vii
# Contents

## 3 Gravity
- 3.1 The ellipticity of the Earth’s figure 86
- 3.2 The geopotential 88
- 3.3 The equipotential surface of gravity 91
- 3.4 Gravity on the reference spheroid 96
- 3.5 Geocentric and geographic latitude 102
- 3.6 The geoid 106

Further reading 115

## 4 The tides
- 4.1 Origin of the lunar tide-raising forces 116
- 4.2 Tidal potential of the Moon 119
- 4.3 Love’s numbers and the tidal deformation 124
- 4.4 Tidal friction and deceleration of terrestrial and lunar rotations 130

Further reading 136

## 5 Earth’s rotation
- 5.1 Motion in a rotating coordinate system 138
- 5.2 The Coriolis and Eötvös effects 140
- 5.3 Precession and forced nutation of Earth’s rotation axis 142
- 5.4 The free, Eulerian nutation of a rigid Earth 155
- 5.5 The Chandler wobble 157

Further reading 169

## 6 Earth’s heat
- 6.1 Energy and entropy 171
- 6.2 Thermodynamic potentials and Maxwell’s relations 172
- 6.3 The melting-temperature gradient in the core 176
- 6.4 The adiabatic temperature gradient in the core 178
- 6.5 The Grüneisen parameter 179
- 6.6 Heat flow 182

Further reading 197

## 7 Geomagnetism
- 7.1 The dipole magnetic field and potential 198
- 7.2 Potential of the geomagnetic field 200
- 7.3 The Earth’s dipole magnetic field 205
- 7.4 Secular variation 213
- 7.5 Power spectrum of the internal field 214
- 7.6 The origin of the internal field 217

Further reading 225

## 8 Foundations of seismology
- 8.1 Elastic deformation 227
### Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 Stress</td>
<td>228</td>
</tr>
<tr>
<td>8.3 Strain</td>
<td>233</td>
</tr>
<tr>
<td>8.4 Perfectly elastic stress–strain relationships</td>
<td>239</td>
</tr>
<tr>
<td>8.5 The seismic wave equation</td>
<td>244</td>
</tr>
<tr>
<td>8.6 Solutions of the wave equation</td>
<td>252</td>
</tr>
<tr>
<td>8.7 Three-dimensional propagation of plane P- and S-waves</td>
<td>254</td>
</tr>
<tr>
<td>Further reading</td>
<td>258</td>
</tr>
<tr>
<td>Appendix A Magnetic poles, the dipole field, and current loops</td>
<td>259</td>
</tr>
<tr>
<td>Appendix B Maxwell’s equations of electromagnetism</td>
<td>265</td>
</tr>
<tr>
<td>References</td>
<td>276</td>
</tr>
<tr>
<td>Index</td>
<td>278</td>
</tr>
</tbody>
</table>
Preface

This work was written as a supplementary text to help students understand the mathematical steps in deriving important equations in classical geophysics. It is not intended to be a primary textbook, nor is it intended to be an introduction to modern research in any of the topics it covers. It originated in a set of handouts, a kind of “do-it-yourself” manual, that accompanied a course I taught on theoretical geophysics. The lecture aids were necessary for two reasons. First, my lectures were given in German and there were no comprehensive up-to-date texts in the language; the recommended texts were in English, so the students frequently needed clarification. Secondly, it was often necessary to explain classical theory in more detail than one finds in a multi-topic advanced textbook. To keep such a book as succinct as possible, the intermediate steps in the mathematical derivation of a formula must often be omitted. Sometimes the unassisted student cannot fill in the missing steps without individual tutorial assistance, which is usually in short supply at most universities, especially at large institutions. To help my students in these situations, the “do-it-yourself” text that accompanied my lectures explained missing details in the derivations. This is the background against which I prepared the present guide to geophysical equations, in the hope that it might be helpful to other students at this level of study.

The classes that I taught to senior grades were largely related to potential theory and primarily covered topics other than seismology, since this was the domain of my colleagues and better taught by a true seismologist than by a paleomagnetist! Theoretical seismology is a large topic that merits its own treatment at an advanced level, and there are several textbooks of classical and modern vintage that deal with this. However, a short chapter on the relationship of stress, strain, and the propagation of seismic waves is included here as an introduction to the topic.

Computer technology is an essential ingredient of progress in modern geophysics, but a well-trained aspiring geophysicist must be able to do more than
apply advanced software packages. A fundamental mathematical understanding is needed in order to formulate a geophysical problem, and numerical computational skills are needed to solve it. The techniques that enabled scientists to understand much about the Earth in the pre-computer era also underlie much of modern methodology. For this reason, a university training in geophysics still requires the student to work through basic theory. This guide is intended as a companion in that process.

Historically, most geophysicists came from the field of physics, for which geophysics was an applied science. They generally had a sound training in mathematics. The modern geophysics student is more likely to have begun studies in an Earth science discipline, the mathematical background might be heavily oriented to the use of tailor-made packaged software, and some students may be less able to handle advanced mathematical topics without help or tutoring. To fill these needs, the opening chapter of this book provides a summary of the mathematical background for topics handled in subsequent chapters.
Acknowledgments

In writing this book I have benefited from the help and support of various people. At an early stage, anonymous proposal reviewers gave me useful suggestions, not all of which have been acted on, but all of which were appreciated. Each chapter was read and checked by an obliging colleague. I wish to thank Dave Chapman, Rob Coe, Ramon Egli, Chris Finlay, Valentin Gischig, Klaus Holliger, Edi Kissling, Emile Klingelé, Alexei Kuvshinov, Germán Rubino, Rolf Sidler, and Doug Smylie for their corrections and suggestions for improvement. The responsibility for any errors that escaped scrutiny is, of course, mine. I am very grateful to Derrick Hasterok and Dave Chapman for providing me with an unpublished figure from Derrick’s Ph.D. thesis. Dr. Susan Francis, Senior Commissioning Editor at Cambridge University Press, gave me constant support and friendly encouragement throughout the many months of writing, for which I am sincerely grateful. Above all, I thank my wife Marcia for her generous tolerance of the intrusion of this project into our retirement activities.