This work is a compilation of fundamental solutions (or Green’s functions) for classical or canonical problems in elastodynamics, presented with a common format and notation. These formulas describe the displacements and stresses elicited by transient and harmonic sources in solid elastic media such as full spaces, half-spaces, and strata and plates in both two and three dimensions, using the three major coordinate systems (Cartesian, cylindrical, and spherical). Such formulas are useful for numerical methods and practical application to problems of wave propagation in elasticity, soil dynamics, earthquake engineering, mechanical vibration, or geophysics. Together with the plots of the response functions, this work should serve as a valuable reference to engineers and scientists alike. These formulas were heretofore found only scattered throughout the literature. The solutions are tabulated without proof, but giving reference to appropriate modern papers and books containing full derivations. Most formulas in the book have been programmed and tested within the MATLAB environment, and the programs thus developed are both listed and available for free download.

Eduardo Kausel earned his first professional degree in 1967, graduating as a civil engineer from the University of Chile, and then worked at Chile’s National Electricity Company. In 1969 he carried out postgraduate studies at the Technical University in Darmstadt. He earned his Master of Science (1972) and Doctor of Science (1974) degrees from MIT. Following graduation, Dr. Kausel worked at Stone and Webster Engineering Corporation in Boston, and then joined the MIT faculty in 1978, where he has remained since. He is a registered professional engineer in the State of Massachusetts, is a senior member of various professional organizations (ASCE, SSA, EERI, IACMG), and has extensive experience as a consulting engineer.

Among the honors he has received are a 1989 Japanese Government Research Award for Foreign Specialists from the Science and Technology Agency, a 1992 Honorary Faculty Membership in Epsilon Chi, the 1994 Konrad Zuse Guest Professorship at the University of Hamburg in Germany, the Humboldt Prize from the German Government in 2000, and the 2001 MIT-CEE Award for Conspicuously Effective Teaching.

Dr. Kausel is best known for his work on dynamic soil–structure interaction, and for his very successful Green’s functions (fundamental solutions) for the dynamic analysis of layered media, which are incorporated in a now widely used program. Dr. Kausel is the author of more than 150 technical papers and reports in the areas of structural dynamics, earthquake engineering, and computational mechanics.
Fundamental Solutions in Elastodynamics

A Compendium

EDUARDO KAUSEL
Massachusetts Institute of Technology
Contents

Preface

SECTION I: PRELIMINARIES

1. Fundamentals
 1.1 Notation and table of symbols 1
 1.2 Sign convention 4
 1.3 Coordinate systems and differential operators 4
 1.3.1 Cartesian coordinates 4
 1.3.2 Cylindrical coordinates 6
 1.3.3 Spherical coordinates 9
 1.4 Strains, stresses, and the elastic wave equation 13
 1.4.1 Cartesian coordinates 13
 1.4.2 Cylindrical coordinates 16
 1.4.3 Spherical coordinates 21

2. Dipoles
 2.1 Point dipoles or doublets: single couples and tensile crack sources 27
 2.2 Line dipoles 29
 2.3 Torsional point sources 30
 2.4 Seismic moments (double couples with no net resultant) 30
 2.5 Blast loads (explosive line and point sources) 31
 2.6 Dipoles in cylindrical coordinates 32

SECTION II: FULL SPACE PROBLEMS

3. Two-dimensional problems in full, homogeneous spaces 35
 3.1 Fundamental identities and definitions 35
 3.2 Anti-plane line load (SH waves) 35
 3.3 SH line load in an orthotropic space 36
 3.4 In-plane line load (SV-P waves) 38
Contents

3.5 Dipoles in plane strain 40
3.6 Line blast source: suddenly applied pressure 43
3.7 Cylindrical cavity subjected to pulsating pressure 44

4. Three-dimensional problems in full, homogeneous spaces 48
4.1 Fundamental identities and definitions 48
4.2 Point load (Stokes problem) 48
4.3 Tension cracks 52
4.4 Double couples (seismic moments) 54
4.5 Torsional point source 55
4.6 Torsional point source with vertical axis 57
4.7 Point blast source 58
4.8 Spherical cavity subjected to arbitrary pressure 59
4.9 Spatially harmonic line source (2\(\frac{3}{2} \)-D problem) 63

SECTION III: HALF-SPACE PROBLEMS

5. Two-dimensional problems in homogeneous half-spaces 69
5.1 Half-plane, SH line source and receiver anywhere 69
5.2 SH line load in an orthotropic half-plane 70
5.3 Half-plane, SV-P source and receiver at surface (Lamb’s problem) 71
5.4 Half-plane, SV-P source on surface, receiver at interior, or vice versa 73
5.5 Half-plane, line blast load applied in its interior (Garvin’s problem) 76

6. Three-dimensional problems in homogeneous half-spaces 78
6.1 3-D half-space, suddenly applied vertical point load on its surface (Pekeris-Mooney’s problem) 78
6.2 3-D half-space, suddenly applied horizontal point load on its surface (Chao’s problem) 81
6.3 3-D half-space, buried torsional point source with vertical axis 83

SECTION IV: PLATES AND STRATA

7. Two-dimensional problems in homogeneous plates and strata 87
7.1 Plate subjected to SH line source 87
7.1.1 Solution using the method of images 87
7.1.2 Normal mode solution 87
7.2 Stratum subjected to SH line source 88
7.2.1 Solution using the method of images 89
7.2.2 Normal mode solution 90
7.3 Plate with mixed boundary conditions subjected to SV-P line source 90
7.3.1 Solution using the method of images 91
7.3.2 Normal mode solution 92
Contents

SECTION V: ANALYTICAL AND NUMERICAL METHODS

Read me first 97

8. Solution to the Helmholtz and wave equations 98
8.1 Summary of results 98
8.2 Scalar Helmholtz equation in Cartesian coordinates 101
8.3 Vector Helmholtz equation in Cartesian coordinates 102
8.4 Elastic wave equation in Cartesian coordinates 104
8.4.1 Horizontally stratified media, plane strain 105
8.5 Scalar Helmholtz equation in cylindrical coordinates 108
8.6 Vector Helmholtz equation in cylindrical coordinates 109
8.7 Elastic wave equation in cylindrical coordinates 110
8.7.1 Horizontally stratified media 112
8.7.2 Radially stratified media 114
8.8 Scalar Helmholtz equation in spherical coordinates 117
8.9 Vector Helmholtz equation in spherical coordinates 118
8.10 Elastic wave equation in spherical coordinates 120

9. Integral transform method 125
9.1 Cartesian coordinates 125
9.2 Cylindrical coordinates 130
9.2.1 Horizontally stratified media 130
9.2.2 Cylindrically stratified media 136
9.3 Spherical coordinates 137

10. Stiffness matrix method for layered media 140
10.1 Summary of method 141
10.2 Stiffness matrix method in Cartesian coordinates 142
10.2.1 Analytic continuation in the layers 148
10.2.2 Numerical computation of stiffness matrices 150
10.2.3 Summary of computation 151
10.3 Stiffness matrix method in cylindrical coordinates 159
10.3.1 Horizontally layered system 160
10.3.2 Radially layered system 164
10.4 Stiffness matrix method for layered spheres 175
10.4.1 Properties and use of impedance matrices 180
10.4.2 Asymmetry 180
10.4.3 Expansion of source and displacements into spherical harmonics 181
10.4.4 Rigid body spheroidal modes 182

SECTION VI: APPENDICES

11. Basic properties of mathematical functions 185
11.1 Bessel functions 185
11.1.1 Differential equation 185
11.1.2 Recurrence relations 185
Contents

11.1.3 Derivatives 186
11.1.4 Wronskians 186
11.1.5 Orthogonality conditions 186
11.1.6 Useful integrals 187

11.2 Spherical Bessel functions 187
11.2.1 Differential equation 187
11.2.2 Trigonometric representations 188
11.2.3 Recurrence relations 189

11.3 Legendre polynomials 189
11.3.1 Differential equation 189
11.3.2 Rodrigues's formula 190
11.3.3 Trigonometric expansion ($x = \cos \phi$) 190
11.3.4 Recurrence relations 190
11.3.5 Orthogonality condition 190
11.3.6 Expansion in Legendre series 191

11.4 Associated Legendre functions (spheroidal harmonics) 191
11.4.1 Differential equation 191
11.4.2 Recurrence relations 192
11.4.3 Orthogonality conditions 192
11.4.4 Orthogonality of co-latitude matrix 193
11.4.5 Expansion of arbitrary function in spheroidal harmonics 193
11.4.6 Leibniz rule for the derivative of a product of two functions 193

12. Brief listing of integral transforms 194
12.1 Fourier transforms 194
12.2 Hankel transforms 196
12.3 Spherical Hankel transforms 197

13. MATLAB programs 198
Preface

We present in this work a collection of fundamental solutions, or so-called Green’s functions, for some classical or canonical problems in elastodynamics. Such formulas provide the dynamic response functions for transient point sources acting within isotropic, elastic media, in both the frequency domain and the time domain, and in both two and three dimensions. The bodies considered are full spaces, half-spaces, and plates of infinite lateral extent, while the sources range from point and line forces to torques, seismic moments, and pressure pulses. By appropriate convolutions, these solutions can be extended to spatially distributed sources and/or sources with an arbitrary variation in time.

These fundamental solutions, as their name implies, constitute invaluable tools for a large class of numerical solution techniques for wave propagation problems in elasticity, soil dynamics, earthquake engineering, or geophysics. Examples are the Boundary Integral (or element) Method (BIM), which is often used to obtain the solution to wave propagation problems in finite bodies of irregular shape, even while working with the Green’s functions for a full space.

The solutions included herein are found scattered throughout the literature, and no single book was found to deal with them all in one place. In addition, each author, paper, or book uses sign conventions and symbols that differ from one another, or they include only partial results, say only the solution in the frequency domain or for some particular value of Poisson’s ratio. Sometimes, published results are also displayed in unconventional manners, for example, taking forces to be positive down, but displacements up, or scaling the displays in unusual ways or using too small a scale, and so forth. Thus, it was felt that a compendium of the known solutions in a common format would serve a useful purpose. With this in mind, we use throughout a consistent notation, coordinate systems, and sign convention, which should greatly facilitate the application of these fundamental solutions. Also, while we anguished initially at the choice of symbols for the angles in spherical coordinates, we decided in the end to use θ for the azimuth and ϕ for the polar angle. Although this contravenes the common notation, it provides consistency between spherical and cylindrical coordinates and eases the transition between one and the other system.

We tabulate these solutions herein without proof, giving reference to appropriate modern papers and books containing full derivations, but making no effort at establishing the original sources of the derivations or, for that matter, providing a historical account of
these solutions. In some cases, we give no references, in which case we have developed the
formulae ourselves using established methods, either because an appropriate reference
was not known to us, not readily available, or for purely pragmatic reasons. Yet, recogniz-
ing that these are all classical problems, we do not claim to have discovered new formulas.
Also, the tables may not necessarily be complete in that solutions for some additional clas-
sical problems, or important extensions to these, may exist of which we may be unaware.
If and when these are brought to our attention, we shall be happy to consider them with
proper credit when preparing a revised version of this work.
Finally, we have programmed most formulas within the MATLAB or other program-
ing environment, and provide plots of response functions that could be used to verify the
correctness of a particular implementation. Also, we have made every effort at checking
the formulas themselves for correctness and dimensional consistency. Nonetheless, the
possibility always exists that errors may remain undetected in some of these formulas. If the
reader should find any such errors, we shall be thankful if they are brought to our attention.

Eduardo Kausel
Cambridge, September 2005