Foundations for a Disequilibrium Theory of the Business Cycle

Building on The Dynamics of Keynesian Monetary Growth by Chiarella and Flaschel (2000), this book is a key contribution to business cycle theory, setting out a disequilibrium approach with gradual adjustments of the key macroeconomic variables. Its analytic study of a deterministic model of economic activity, inflation and income distribution integrates elements in the tradition of Keynes, Metzler and Goodwin (KMG). After a qualitative analysis of the basic feedback mechanisms, the authors calibrate the KMG model to the stylized facts of the business cycle in the US economy, and then undertake a detailed numerical investigation of the local and global dynamics generated by the model. Finally, topical issues in monetary policy are studied in small macro-models as well as for the KMG model by incorporating an estimated Taylor-type interest rate reaction function. The stability features of this enhanced model are also compared to those of the original KMG model.

CARL CHIARELLA is Professor of Quantitative Finance in the School of Finance and Economics at the University of Technology, Sydney.

PETER FLASCHEL is Professor of Economics at the University of Bielefeld.

REINER FRANKE is a member of the Ludwig Boltzmann Institute for Monetary Economics at the Vienna University of Technology.
Foundations for a Disequilibrium Theory of the Business Cycle

Qualitative Analysis and Quantitative Assessment

Carl Chiarella
School of Finance and Economics, University of Technology, Sydney

Peter Flaschel
Faculty of Economics, University of Bielefeld

Reiner Franke
Ludwig Boltzmann Institute for Monetary Economics, Vienna University of Technology
Contents

List of figures x

List of tables xiii

Foreword by J. Barkley Rosser, Jr. xv

Preface xix

Notation xxii

1 Competing approaches to Keynesian macrodynamics 1

1.1 Introduction 1

1.1.1 General methodological remarks 1

1.1.2 A historical perspective 6

1.2 Neoclassical Synthesis, Stage I: traditional AS-AD dynamics 8

1.2.1 Keynesian AS-AD dynamics with rational expectations 9

1.2.2 Further scenarios of the wage-price dynamics 16

1.3 Neoclassical Synthesis, Stage II: New-Keynesian macrodynamics 21

1.3.1 The baseline model with perfect wage flexibility 23

1.3.2 Staggered wages and prices 27

1.3.3 Combining forward-looking and backward-looking behaviour I 31

1.3.4 Combining forward-looking and backward-looking behaviour II 37

1.4 Keynesian DAS-AD dynamics and the wage-price spiral 42

1.4.1 The D(isequilibrium)/AS-AD approach to the wage-price spiral 42

1.4.2 Feedback-guided stability analysis: example 1 47

1.4.3 Feedback-guided stability analysis: example 2 49

1.4.4 D(isequilibrium)/AD-D(isequilibrium)/AD modelling 52

1.5 Plan of the book 54

1.5.1 Part I: Textbook Approaches 54

1.5.2 Part II: Analytical Framework: Theory and Evidence 55

1.5.3 Part III: Monetary Policy 58
Contents

Part I Textbook Approaches 61
2 AS-AD growth theory: a complete analysis 63
 2.1 Introduction 63
 2.2 The modelling equations 65
 2.3 The model in intensive form 70
 2.4 IS-LM analysis and completion of the dynamic system 74
 2.5 Local stability analysis 79
 2.6 A numerical stability analysis 84
 2.7 Basic feedback loops 89
 2.8 A representative simulation run 92
 2.9 Conclusion 97
 2.10 Appendix: The Hopf bifurcation theorem 98

3 Disequilibrium growth: the point of departure 100
 3.1 Introduction 100
 3.2 An alternative to the neoclassical production function 102
 3.3 The remainder of the model 107
 3.4 The model in intensive form 112
 3.5 Local stability results 116
 3.6 A tentative calibration of the real wage dynamics 123
 3.7 Numerical stability analysis 127
 3.8 Basic feedback loops 135
 3.9 The cyclical pattern 142
 3.10 Global stabilization through modified adaptive expectations 145
 3.11 Conclusion 151

Part II Analytical Framework: Theory and Evidence 155
4 The Keynes–Metzler–Goodwin model 157
 4.1 Introduction 157
 4.2 Formulation of the model 160
 4.2.1 Households 160
 4.2.2 Firms 163
 4.2.3 The government 167
 4.2.4 The wage-price sector 168
 4.2.5 Checking on accounting consistency 171
 4.3 The model in intensive form 173
 4.4 The general strategy of the stability proof 179
 4.5 Proving local stability with a cascade of stable matrices 182
 4.6 Conclusion 190
 4.7 Appendix: The discrete-time approximation 191

5 Calibration of three wage-price modules 196
 5.1 Introduction 196
 5.2 Stylized facts of wage-price dynamics 201
6 Calibration of the full KMG model 247
 6.1 Introduction 247
 6.2 Stylized facts of the goods market 248
 6.3 The calibration levels 250
 6.3.1 Recapitulation of the wage-price dynamics 251
 6.3.2 The money market 253
 6.3.3 Production and the goods market 254
 6.3.4 Endogenous utilization 257
 6.4 Calibration under exogenous fluctuations of utilization 259
 6.4.1 Steady-state values and other constant ratios 259
 6.4.2 Interest rate oscillations 261
 6.4.3 Goods market dynamics 262
 6.5 Synopsis of the calibration results 265
 6.6 Empirical fluctuations of utilization 266
 6.7 The fully endogenous model and its dynamics 268
 6.7.1 A nonlinear investment function 268
 6.7.2 Calibrating investment and the long-run dynamics 271
 6.7.3 Evaluation of the cyclical features 275
 6.8 Conclusion 279
 6.9 Appendix 1: The empirical time series 280
 6.10 Appendix 2: A semi-structural econometric model and its eigenvalues 281

7 Subsystems and sensitivity analysis of the KMG model 287
 7.1 Introduction 287
 7.2 The Metzlerian subdynamics 289
 7.2.1 Mathematical two-dimensional stability analysis 289
 7.2.2 The Metzlerian feedback mechanisms 293
 7.2.3 The Metzlerian adjustment parameters in the full KMG model 298
 7.3 The wage-price subdynamics 302
 7.3.1 Mathematical two-dimensional stability analysis 302
 7.3.2 The real wage feedback mechanisms 309
Contents

7.3.3 Parameter diagrams for the two-dimensional and six-dimensional dynamics 312

7.4 The monetary subdynamics 317

7.4.1 A necessary condition for stability in the three-dimensional system 317

7.4.2 The role of the output–inflation nexus 320

7.4.3 Can a negative output–inflation nexus be detected in the data? 323

7.4.4 Parameter diagrams for the three-dimensional and six-dimensional dynamics 327

7.5 Towards a landscape of the parameter stability effects 336

7.5.1 Reference to the \((\beta_m, \beta_c)\) parameter plane 336

7.5.2 Reference to different stability intervals 340

7.5.3 A succinct characterization of the parameters 343

7.5.4 Stability regions in the plane: the six elementary contours 348

7.6 Properties of the dynamic trajectories 350

7.6.1 Stable limit cycles from a Hopf bifurcation 350

7.6.2 Is there scope for complex cyclical behaviour? 354

7.6.3 Are countercyclical government expenditures stabilizing? 359

7.7 Conclusion 366

Part III Monetary Policy 369

8 The Taylor rule in small macromodels 371

8.1 Introduction 371

8.2 The concept of the Taylor rule 372

8.2.1 The interest rate as a policy variable 372

8.2.2 Specification of the Taylor rule 376

8.2.3 Estimation of the Taylor rule 379

8.3 Four prototype models 385

8.3.1 Model 1: Taylor interest rate and static IS 386

8.3.2 Model 2: Taylor interest rate and dynamic IS 389

8.3.3 Model 3: Interest rate smoothing and static IS 391

8.3.4 Model 4: Interest rate smoothing and dynamic IS 392

8.4 An estimated Keynes–Phillips–Taylor model from the literature 394

8.4.1 Formulation and estimation of the Rudebusch–Svensson model 394

8.4.2 Stability analysis 397

8.4.3 Dynamic properties 403

8.4.4 A note on low rates of interest 413

8.5 Appendix: The reduced form of forward-looking models 415

8.5.1 A neoclassical specification 416

8.5.2 A New-Keynesian specification 421

9 Incorporating the Taylor rule into KMG 427

9.1 Introduction 427

9.2 The Keynes–Metzler–Goodwin–Taylor model 428

9.2.1 Formulation of the model 429

9.2.2 Possible non-uniqueness of the equilibrium 434

9.2.3 Mathematical stability analysis and its limitations 444

9.2.4 Numerical support for sufficient stability conditions 453

© Cambridge University Press www.cambridge.org
9.3 Global dynamics of the KMGT model 459
9.3.1 Setting up a stable and an unstable scenario 459
9.3.2 Dynamics in the stable case: the Frisch paradigm 463
9.3.3 Dynamics in the unstable case: endogenous cycles 469
9.4 The role of the policy coefficients in the Taylor rule 474
9.4.1 Stability effects 474
9.4.2 Policy changes and their impact on the dynamics in the stable case 479
9.4.3 Policy changes and their impact on the dynamics in the unstable case 486
9.5 Towards a landscape of the parameter stability effects in KMGT 491
9.5.1 Reference to the \((\beta_{lo}, \beta_{hi})\) parameter plane 491
9.5.2 Reference to different stability intervals 495
9.5.3 A succinct characterization of the parameters in KMG and KMGT 498
9.6 Appendix: The detailed Jacobian matrix of the KMGT model 502

References 505

Index 514
Figures

1.1 An anticipated monetary policy shock in NGS \(I(\rho, \hat{\omega}) \) 15
1.2 The parameter diagram of \((\alpha_v, \alpha_e)\) for system (1.50)–(1.53) 42
2.1 The local dynamics arising from parameters \((\beta_e, \kappa_e)\) 88
2.2 Time paths of \(y, i, \hat{p}\) and \(\pi\) in response to a monetary shock 95
3.1 Percentage deviations of empirical time series from an HP trend line 104
3.2 Stylized motions of \(u, \omega\) and \(v\) induced by (3.34) 126
3.3 The local dynamics arising from parameters \((\beta_y, \kappa_p)\) 129
3.4 The \((\beta_e, \kappa_e)\) parameter plane under \textit{ceteris paribus} parameter variations 131
3.5 Reswitching phenomena in selected parameter diagrams 132
3.6 \((\beta_v, f_j)\) parameter diagrams under variations of \(\kappa_v\) 134
3.7 The model’s basic feedback loops 139
3.8 Time paths of \(m, \hat{p}\) (and \(\pi\)), \(\omega\) and \(u\) in a base scenario 143
3.9 Time series of \(u, m, \hat{p}\) and \(\pi\) (dotted line) resulting from (3.44)–(3.46) 149
5.1 Measures of the business cycle 202
5.2 Cyclical components of empirical time series 204
5.3 Admissible pairs \((\beta_{we}, \beta_{ve})\) under CCP 227
5.4 Admissible pairs \((\beta_{pe}, \beta_{pe})\) under PPC (level 2) 232
5.5 Admissible pairs \((\beta_{ve}, \kappa_{vp})\) under VMK (level 3) 235
5.6 Model-generated time series under empirical fluctuations of utilization 239
6.1 Cyclical components of empirical series 249
6.2 Endogenous variables under empirical fluctuations of \(u\) 267
6.3 The parameter diagram of \((\beta_{ve}, \beta_{ve})\) 271
6.4 Time series after an expansionary monetary shock 273
6.5 Phase diagrams of the calibrated endogenous model 275
6.6 Selected time series of the calibrated endogenous model 276
7.1 Metzlerian feedback mechanisms 294
7.2 The parameter diagram of \((\beta_e, \beta_{ve})\) for the Metzlerian two-dimensional subdynamics 297
List of figures xi

7.3 The parameter diagram of \((\beta_e, \beta_m)\) for the full KMG model 299
7.4 Parameter diagrams of \((\beta_e, \beta_m)\) for different values of \(\beta_{ue}\) 301
7.5a Plain real wage effects \((\beta_{ue} = \beta_{pe} = 0)\) 309
7.5b Augmented real wage effects \((\beta_{ue}, \beta_{pe} > 0)\) 311
7.6 \((\beta_{ue}, \beta_{mu})\) parameter diagrams of plain real wage effects \((\beta_{ue} = \beta_{pe} = 0)\). 313
7.7 \((\beta_{ue}, \beta_{mu})\) parameter diagrams of augmented real wage effects \((\beta_{ue} = 0.50, \beta_{pe} = 1.50)\) 315
7.8 \((\beta_{ue}, \beta_{mu})\) parameter diagrams (given, in particular, \(\beta_{ue} = 0.55, \beta_{pe} = 0.15\)) 316
7.9 The negative output–inflation nexus \((ceteris paribus)\) 321
7.10 The basic feedback loops of the monetary subdynamics 322
7.11 The dynamic output–inflation nexus 324
7.12 Impulse–response functions of \(u\) and \(\hat{p}\) from VARs 326
7.13a \((\beta_e, \beta_{mu})\) parameter diagrams for the monetary subdynamics (I) 329
7.13b \((\beta_e, \beta_{mu})\) parameter diagrams for the monetary subdynamics (II) 330
7.14 \((\beta_e, \kappa_e)\) parameter diagrams for the monetary subdynamics 331
7.15a \((\beta_e, \beta_{mu})\) parameter diagrams for the complete KMG model (I) 332
7.15b \((\beta_e, \beta_{mu})\) parameter diagrams for the complete KMG model (II) 333
7.16 \((\beta_e, \kappa_e)\) parameter diagrams for the complete KMG model 335
7.17 The impact of selected parameter variations on the \((\beta_{ue}, \beta_{pe})\) stability region 338
7.18 Examples of parameter diagrams underlying the classification in table 7.2 342
7.19 The six basic types of stability region 349
7.20 The maximal real part of the eigenvalues under variations of \(\beta_{pe}\) 353
7.21 Stable limit cycles emerging from a Hopf bifurcation of \(\beta_{pe}\) 354
7.22 Time series of utilization in the three scenarios LP, AP and CD 357
7.23 The impact of countercyclical government spending on local stability 361
7.24 Time series resulting from \(\gamma_y = 0\) and \(\gamma_y = 0.10\) 364
List of figures

8.1 The dominant eigenvalue $\lambda^* = \lambda^*(\tilde{\alpha}_s)$ in the RS model 401
8.2 $(\tilde{\alpha}_s, \tilde{\alpha}_p)$ parameter diagram of the RS model 402
8.3 The impulse–response function of the RS model (adverse demand shock) 404
8.4 The impulse–response function of the RS model with $\tilde{\alpha}_s = 1.00$ 407
8.5 The impulse–response function of the RS model with $\tilde{\alpha}_s = 2.00$ 408
8.6 A sample run of the stochastic RS model 410
9.1 The trajectory of the KMGT model after an adverse demand shock 439
9.2 The continuation of the time paths of figure 9.1 441
9.3 Five demand shocks in the unstable case of Figures 9.1 and 9.2 443
9.4 Dominant eigenvalue $\lambda^* = \lambda^*(f_{\kappa})$ in the KMGT model (real part) 451
9.5 $\lambda^* = \lambda^*(f_{\kappa})$ in the KMGT model at a higher value of κ_π (real part) 452
9.6 The parameter diagram of $(\beta_{\pi}, \beta_{\mu})$ for the KMGT model 461
9.7 The real part of dominant eigenvalue $\lambda^* = \lambda^*(\tilde{\beta}_\mu)$ in the KMGT model 462
9.8 The impulse–response function in the stable scenario 463
9.9 A sample run of the stochastic KMGT model 467
9.10 An extract from the sample run in figure 9.9 468
9.11 Phase diagrams of the KMGT model with endogenous cycles 470
9.12 Selected time series of the limit cycle in the KMGT model 471
9.13 Parameter diagrams with policy coefficient α_κ 475
9.14 Parameter diagrams in the (α_s, α_u) plane 478
9.15 Impulse–response functions for different policy parameters 480
9.16 A sample run of scenario (4): $\alpha_s = 0.20, \alpha_u = 1.30$ 485
9.17 A sudden increase of α_κ on the limit cycle of the unstable scenario 487
9.18 A sudden increase of α_u on the limit cycle of the unstable scenario 490
9.19 The impact of selected parameter variations on the $(\beta_{\mu}, \beta_{\pi})$ stability region 494
9.20 The parameter diagram of $(\beta_{\mu}, \beta_{\pi})$ for the KMGT model 499
9.21 Parameter diagrams of $(\beta_{\kappa}, \kappa_\pi)$ for the KMGT model under variations of β_{π} 501
9.22 The parameter diagram of $(\beta_{\kappa}, \beta_{\mu})$ for the KMGT model 502
Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Four variants of the Neoclassical Synthesis, Stage I (NCS I)</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>The core of the Pascal source code</td>
<td>193</td>
</tr>
<tr>
<td>5.1</td>
<td>Descriptive statistics for cyclical components of quarterly series, 1961:1—1991:4</td>
<td>206</td>
</tr>
<tr>
<td>5.2</td>
<td>Desirable features of macrodynamic oscillations</td>
<td>209</td>
</tr>
<tr>
<td>5.3</td>
<td>Cyclical properties of the employment rate</td>
<td>223</td>
</tr>
<tr>
<td>5.4</td>
<td>Second-best criteria for macrodynamic oscillations</td>
<td>227</td>
</tr>
<tr>
<td>5.5</td>
<td>Parameter variations in base scenario CCP</td>
<td>229</td>
</tr>
<tr>
<td>5.6</td>
<td>Cyclical properties of the base scenarios</td>
<td>237</td>
</tr>
<tr>
<td>5.7</td>
<td>A synopsis of the base scenario coefficients</td>
<td>237</td>
</tr>
<tr>
<td>5.8</td>
<td>Statistics obtained from the PPC base scenario under empirical utilization series</td>
<td>241</td>
</tr>
<tr>
<td>5.9</td>
<td>The same experiment as in table 5.8, with (\beta_{loc} = 0.08, \kappa_{rp} = 0.10)</td>
<td>242</td>
</tr>
<tr>
<td>6.1</td>
<td>Descriptive statistics for cyclical components of quarterly series, 1961:1—1991:4</td>
<td>251</td>
</tr>
<tr>
<td>6.2</td>
<td>Desirable features of macrodynamic oscillations</td>
<td>251</td>
</tr>
<tr>
<td>6.3</td>
<td>The standard deviation ((\sigma_i)) of the bond rate at calibration level 4</td>
<td>262</td>
</tr>
<tr>
<td>6.4</td>
<td>Cyclical features of variables at calibration levels 5 and 6</td>
<td>264</td>
</tr>
<tr>
<td>6.5</td>
<td>Cyclical statistics of variables under exogenous sine wave oscillations of utilization</td>
<td>266</td>
</tr>
<tr>
<td>6.6</td>
<td>Cyclical statistics of the calibrated endogenous model</td>
<td>277</td>
</tr>
<tr>
<td>7.1</td>
<td>The impact of parameter variations on the stability region in the ((\beta_{loc}, \beta_{rp})) plane</td>
<td>337</td>
</tr>
<tr>
<td>7.2</td>
<td>The impact of parameter variations on the stability intervals of five selected (‘endogenous’) parameters</td>
<td>341</td>
</tr>
<tr>
<td>7.3</td>
<td>A succinct characterization of the parameter stability effects</td>
<td>344</td>
</tr>
<tr>
<td>7.4</td>
<td>Parameters and eigenvalues constituting scenarios LP, AP and CD</td>
<td>356</td>
</tr>
<tr>
<td>8.1</td>
<td>Output and inflation variability in the stochastic RS model</td>
<td>412</td>
</tr>
</tbody>
</table>
List of tables

9.1 Cyclical statistics of the KMGT model with endogenous cycles 473
9.2 Standard deviations of time series in alternative stochastic simulations 482
9.3 Standard deviations of time series in alternative limit cycles 489
9.4 The impact of parameter variations on the stability region in the \((\beta_{1u}, \beta_{1v})\) plane 493
9.5 The impact of parameter variations on the stability intervals of five selected (‘endogenous’) parameters 496
9.6 A succinct characterization of the parameter stability effects in KMG and KMGT 499
The authors of this book, Carl Chiarella, Peter Flaschel and Reiner Franke, have been engaged in a major research programme in macroeconomic analysis for an extended period of time, arguably dating from the mid-1980s if not earlier. This has resulted in a series of papers and books by them and several others in various combinations, including Willi Semmler, Toichiro Asada, Gang Gong, and still more. This group is scattered in various parts of the globe, principally in the cities of Bielefeld, Beijing, New York, Sydney and Tokyo. While the output of this group is the result of visits to each other’s institutions (particularly those of Flaschel to the University of Technology, Sydney) and meetings at various international conferences, the intellectual centre of their enterprise has been the Faculty of Economics at Bielefeld University. It is here that Flaschel, Franke and Semmler are, or have been at various times, located, and where the group has held an almost annual workshop on their developing research agenda over the last decade. Hence I feel it is appropriate to neologize here and dub the results of their collective efforts to constitute an emerging school of macroeconomic thought ‘the Bielefeld School’. This book can then be characterized as representing a significant phase in the development of this Bielefeld School.

The authors themselves have in earlier work provided their own label for the core model they have developed and studied: the ‘Keynes–Metzler–Goodwin’ (KMG) model. This book more directly compares this model to other macroeconomic approaches, both those of a more New-Classical orientation as well as most substantially with those of various New-Keynesian formulations, especially the recently emerging synthesis due to Michael Woodford along with Glenn Rudebusch and Lars Svensson. At one point, in reference to James Tobin’s later work, they suggest that their model could be considered to be derived from an ‘Old-Keynesian’ perspective, and it does draw on the basic IS-LM framework still used by many policymakers, with an added aggregate supply component. However, they generally stick to their use of the KMG label in describing it.
The basic elements in this approach involve allowing for substantial real effects to arise from financial markets, which they argue is the Keynes part. The Metzler part involves allowing an important role for inventory adjustments, something that is much less common in many current macroeconomic models. Finally, the Goodwin part emphasizes the importance of income distribution, particularly wage dynamics operating through a modified Phillips curve setup. In sharp contrast to both the New-Classical and New-Keynesian approaches they abjure the rational expectations assumption in modelling inflationary expectations. They do allow inflation expectations to play a central role in their model, but view them as operating in a more generalized ‘inflation climate’ that gradually adjusts over time. Rather than just a trend-chasing adaptive expectations mechanism they also assume a tendency for reversion to a normal level over time, a pattern they label ‘regressive expectations’. These are models fundamentally of disequilibrium dynamics with gradually adapting processes.

Another central element that distinguishes their approach from many others is the assumption of nonlinearity in the investment function. While this may further separate them from many of the New-Classical and Keynesian modellers, this draws upon the influence of earlier economists who worked at the time of Keynes, such as Kalecki or – in his aftermath – such as Kaldor and Hicks, with both Metzler and Goodwin part of that group as well. This links them with the more general literature on models of complex dynamics arising from nonlinear models, which both Chiarella and Franke have separately contributed to in the past. In this KMG approach, instability arises from the nonlinearities being sufficiently great to trigger Hopf bifurcations and resulting endogenous limit cycle behaviour. However, these nonlinearities also provide bounds to the dynamics of the system.

There are two principal extensions that this book presents. The first is an effort to reach out more directly to policymakers by an effort to calibrate their model to fit parameter values relevant to the US economy. The second (in the final two chapters) is the introduction of a Taylor rule to endogenize policy feedback and the determination of interest rates. In this they are directly confronting the efforts of Woodford, and also of Rudebusch and Svensson, who have seen the Taylor rule as a way to eliminate indeterminacy in their models. They label this extension of their basic model the KMGT model.

Their final chapter examines the stability characteristics of this KMGT model. There they de-emphasize the nonlinearity of the investment function, which allows for endogenous cycles no longer to arise from a Hopf bifurcation. They even consider the matter of cycles due to
exogenous shocks on an otherwise stable system in a Frischian manner. A final curious implication from this model is a heightened importance of the Metzlerian aspect of the system in determining the pattern of its dynamics.

At this point I would like to raise a point about a lacuna in this otherwise generally comprehensive book. This is the relationship of this Bielefeld School to those of the various branches of Post-Keynesian macroeconomics. They do not directly draw upon or cite any of the current prominent Post-Keynesian economists. However, it can be argued that their approach can be viewed as a sophisticated formulation of certain Post-Keynesian elements or trends. Certainly, Goodwin as well as Kalecki have been much admired by many Post-Keynesians, and the idea that money has real effects is an idea accepted by most Post-Keynesians. However, they do not obviously focus on endogenous money per se as do Paul Davidson and Basil Moore, even though their use of a Taylor rule effectively makes money endogenous. Also, they have been more precisely mathematical than have been many of the Post-Keynesians. Nevertheless, certain Post-Keynesians have developed models that have some definite similarities to what this school does, with Philip Arestis and Peter Skott coming to mind most particularly, notably in combining financial models with real effects with distributional shares dynamics that can generate endogenous cycles. Thus, I have no problem describing the Bielefeld School as representing effectively a highly sophisticated Post-Keynesian approach. Certainly, there is no doubt that they belong to the more general Keynesian approach, arguably much more so than the New-Keynesians, who use the questionable rational expectations assumption.

Thus the authors of this book should be applauded. They have moved a distinctive and policy-relevant approach to macroeconomic analysis forward decisively. Their careful synthesis of realistic dynamic elements and their careful analysis of the sensitivity and stability characteristics of their model in a policy context is much to be admired. In this book the Bielefeld School achieves a genuine culmination of great depth and breadth.

J. BARKLEY ROSSER, JR.
James Madison University
Harrisonburg, Virginia

October 2004
Preface

In this book we build on a theoretical approach the foundations for which were laid in the work *The Dynamics of Keynesian Monetary Growth: Macrofoundations* by two of the present authors. In that work we considered a hierarchically structured sequence of macrodynamic models, starting from Tobinian neoclassical monetary growth and its historical counterpart, the Keynes–Wicksell monetary growth models, leading then via Keynesian IS-LM growth dynamics to a model type that has been labelled the Keynes–Metzler–Goodwin (KMG) growth dynamics. In the present book we will extend the baseline KMG model in various directions, analysing it in a much more detailed way than in previous work and, most importantly, studying it also from the empirical and the numerical point of view. Special emphasis is placed on the dynamic feedback relationships and on endogenously generated business cycle fluctuations in a growth context. In the initial stages the study concentrates here on the private sector and, essentially, abstracts from policy issues. Gaining thereby basic insights into the stabilizing and destabilizing forces in the economy, modern discussions of monetary policy are also integrated later.

As shown in the work by Chiarella and Flaschel, the KMG model type manages to avoid a variety of problems associated with the traditional IS-LM growth model, such as the boundedness in the responsiveness of aggregate demand, multiple IS-LM equilibria, or discontinuities in phase space dynamics. The model achieves this by allowing for disequilibrium on the goods market, taking the implied inventory changes into account and introducing gradual adjustments towards desired inventories as well as the concept of expected sales. All this is formulated along Metzlerian lines and so constitutes the M-component of the KMG approach. From the higher-dimensional viewpoint of the Metzlerian disequilibrium adjustment process, the problems that many advanced IS-LM models are facing appear, in fact, rather misleading. Our model’s Metzlerian component can thus be regarded as a useful or even indispensable device
for the general modelling architecture, though its mechanisms are not at the heart of the economy.

The outstanding theoretical features of the KMG approach to macro-dynamics are the relationships to Keynes’ (1936) *General Theory* and to Goodwin’s (1967) seminal paper on the interaction of growth and income distribution; these are the K- and G-components in the model. Concerning the K-component, the present book is still close to traditional macroeconomics in its description of consumption and investment behaviour. In a first stage, the interest rate is also determined by a familiar LM equilibrium condition, where the money supply is assumed to grow at a constant rate. It can in this respect be said that, while government and a central bank are present in the model, they conduct a neutral policy, so that the private sector can be studied in a kind of vacuum. In a second stage, we take up the recent New-Keynesian research agenda and follow the modern practice of studying monetary policy rules – i.e. interest rate rules of a Taylor type.

The real innovation of our modelling framework lies, nevertheless, in a new approach to the wage-price spiral as an extension of both Keynes’ and Goodwin’s views on this matter. As it is formulated and combined with aggregate demand, this building block can be usefully compared to the traditional Keynesian AS-AD dynamics (Old Neoclassical Synthesis) as well as to the currently fashionable New-Keynesian theory of staggered wage and price settings (New Neoclassical Synthesis). Underlining the agents’ gradual reactions to the disequilibria they perceive, the wage-price dynamics in our model are, however, radically different from the Neoclassical Syntheses (Old and New), with respect to modes of operation and the implications for the macrodynamic system into which it is embedded. The role of an elaborate wage-price spiral in the course of the business cycle is thus one major focus of interest in this book, from the theoretical point of view as well as empirically, where in our numerical simulations we seek to calibrate the model’s cyclical behaviour to the stylized facts of the business cycle fluctuations observed in the world’s major economy, namely the US economy.

In sum, the book takes up the work begun in Chiarella and Flaschel (2000a) and provides detailed qualitative, quantitative and empirical studies of a mature version of the traditional Keynesian approach, which were then still out of reach. As an alternative to the New-Keynesian macroeconomics, it puts forward an approach to disequilibrium dynamics that aims to shed light on the study of demand-constrained modern market economies that, in particular, are subject to sometimes more and sometimes less virulent adjustments in wages and prices.
A number of professional colleagues deserve special thanks. There are, first of all, our co-authors in several related published and unpublished works, Toichiro Asada, Willi Semmler and Peter Skott, who in many ways have contributed to the present project through stimulating discussions on various aspects of the subject matter of this book as well as on related research projects. We furthermore thank Richard Day, Duncan Foley and Reinhard Neck for a variety of stimulating comments at various stages in the development of the present work and related topics. We are grateful for comments and criticisms we have received from numerous participants at presentations of aspects of the material of this book at international conferences and research seminars. Of course, none of the aforementioned is responsible for the remaining errors in this work, neither with respect to form nor substance. We are indebted to three anonymous referees who read the original version of the manuscript (chapters 2 to 6) and offered many, even detailed, suggestions for its improvement. We also wish to acknowledge the sustained financial support for this project from the School of Finance and Economics at the University of Technology, Sydney. Finally, we would like to thank Chris Harrison and Lynn Dunlop of CUP for all that they have done to make the publication process go as smoothly as it has.

Carl Chiarella
School of Finance and Economics
University of Technology, Sydney

Peter Flaschel
Faculty of Economics
University of Bielefeld

Reiner Franke
Ludwig Boltzmann Institute for Monetary Economics
Vienna University of Technology

September 2004
Steady-state or trend values are indicated by a superscript 'o'. When no confusion arises, letters F, G, H may also define certain functional expressions in a specific context. A dot over a variable \dot{x} denotes the time derivative, a caret its growth rate: $\dot{x} = dx/dt$, $\dot{x} = \dot{x}/x$. In the numerical simulations, flow variables are measured at annual rates.

As far as possible, the notation tries to follow the logic of using capital letters for level variables and lower-case letters for variables in intensive form, or for constant (steady-state) ratios. Greek letters are most often constant coefficients in behavioural equations (with, however, the notable exceptions being π, ω, ξ and ϕ).

- B: outstanding government fixed-price bonds (priced at $p_b = 1$)
- C: real private consumption (demand is generally realized)
- E: number of equities
- F: neoclassical production function in chapter 2; otherwise generic symbol for functions defined in a local context
- G: real government expenditure (demand is always realized)
- I: real net investment of fixed capital (demand is always realized)
- I^d: desired real inventory investment
- J: Jacobian matrix in the mathematical analysis
- K: stock of fixed capital
- L: employment – i.e. total working hours per year (labour demand is always realized)
- L^s: labour supply – i.e. supply of total working hours per year
- M: stock of money supply
- N: inventories of finished goods
- N^d: desired stock of inventories
- S: total real saving: $S = S_f + S_g + S_h$
- S_f: real saving of firms (unintended inventory changes)
- S_g: real government saving
- S_h: real saving of private households
- T: total real tax collections
Notation xxiii

\[T^r \] real taxes of asset holders
\[W \] real wealth of private households
\[Y \] real output
\[Y^d \] real aggregate demand
\[Y^* \] expected real aggregate demand
\[Y^n \] output at normal use of capacity: \(Y^n = y^n K \)
\[a_y \] abbreviates a sum of coefficients in chapter 6, section 3, subsection 3: \(a_y = \xi_y + \gamma + s, \delta - (1 - s), \theta \)
\[c_r \] consumption coefficient of agents without income from economic activities; see chapter 4, section 2, subsection 1, eq. (4.4)
\[e \] employment rate (w.r.t. hours): \(e = L/L' \)
\[f_x \] functional relationship representing the determination of variable \(x \), \(\dot{x} \) or \(\hat{x} \)
\[f_{xy} \] partial derivative of function \(f_x \) with respect to variable \(y \)
\[g^x \] steady-state growth rate of real variables
\[g_L \] growth rate of labour supply: \(g_L = \dot{L} \) (a constant)
\[g_M \] growth rate of money supply: \(g_M = \dot{M} \) (a constant)
\[g \] growth rate of trend labour productivity: \(g = \dot{z}^x \) (a constant)
\[i \] nominal rate of interest on government bonds; federal funds rate in chapters 8 and 9
\[k^L \] fixed capital per (efficiency units of) labour supply: \(k^L = K/z^L L' \)
\[\ell \] labour intensity (in efficiency units): \(\ell = z^L L/K = 1/k^L \)
\[m \] real balances relative to the capital stock: \(m = M/pK \)
\[n \] inventory–capital ratio: \(n = N/K \)
\[p \] price level
\[p^e \] price of equities
\[q \] return differential: \(q = r - (i - \pi) \)
\[r \] rate of return on fixed capital, specified as \(r = [pY - wL - \delta p K]/pK \)
\[s_1 \] propensity to save out of capital income on the part of asset owners
\[s_h \] households’ propensity to save out of total income (in chapters 2 and 3)
\[u \] rate of capacity utilization: \(u = Y/Y^n = y/y^n \)
\[v \] wage share (in gross product): \(v = wL/pY \)
\[w \] nominal wage rate per hour
\[x_m \] auxiliary variable in chapter 2: \(x_m = z^M/wK \)
\[y \] output–capital ratio: \(y = Y/K \); except in chapter 1, section 3, where \(y \) denotes the output gap
\[y^d \] ratio of aggregate demand to capital stock: \(y^d = Y^d/K \)
\[y^e \] ratio of expected demand to capital stock: \(y^e = Y^e/K \)
Notation

\(y^o \)
normal output–capital ratio (a constant; no recourse to a neoclassical production function)

\(z \)
labour productivity – i.e. output per working hour: \(z = Y/L \)

\(\alpha^* \)
trend value, or 'normal' level, of labour productivity

\(\alpha \)
marginal product of capital in chapter 2:
\(\alpha = \alpha(y) = F_p(K, \alpha^* L); \) symbol for policy parameters in Taylor rule in chapters 8 and 9

\(\alpha_i \)
coefficient measuring interest rate smoothing in the Taylor rule

\(\alpha_p \)
coefficient on inflation gap in the Taylor rule

\(\alpha_o \)
coefficient on output gap in the Taylor rule

\(\beta_i \)
generically, reaction coefficient in an equation determining \(x, \dot{x} \) or \(\hat{x} \)

\(\beta_a \)
adjustment speed in adaptive sales expectations

\(\beta_c \)
general adjustment speed in revisions of the inflation climate

\(\beta_{cy} \)
generically, reaction coefficient related to the determination of variable \(x, \dot{x} \) or \(\hat{x} \) with respect to changes in the exogenous variable \(y \)

\(\beta_{qi} \)
responsiveness of investment (capital growth rate) to changes in \(q \)

\(\beta_{qu} \)
responsiveness of investment to changes in \(u \)

\(\beta_{qv} \)
stock adjustment speed

\(\beta_{sv} \)
desired ratio of inventories over expected sales

\(\beta_{s1} \)
reaction coefficient of \(u \) in price Phillips curve

\(\beta_{s1} \)
reaction coefficient of \((1+\mu)v - 1 \) in price Phillips curve

\(\beta_{v1} \)
reaction coefficient of \(v \) in wage Phillips curve

\(\beta_{v1} \)
reaction coefficient of \((v - v^o)/v^o \) in wage Phillips curve

\(\gamma \)
responsiveness of (procyclical) labour productivity to changes in \(u \)

\(\eta_{m} \)
stock adjustment speed

\(\eta_{m} \)
desired ratio of inventories over expected sales

\(\kappa \)
reaction coefficient of \(e \) in wage Phillips curve

\(\kappa_{p} \)
parameter weighting \(\hat{w} \) vs. \(\pi \) in price Phillips curve

\(\kappa_{w} \)
parameter weighting \(\hat{p} \) vs. \(\pi \) in wage Phillips curve

\(\kappa_{wp} \)
same as \(\kappa_{w} \) in chapter 5

\(\kappa_{wz} \)
parameter weighting \(\hat{z} \) vs. \(\hat{z}^o \) in wage Phillips curve (only chapter 5)
Notation xxv

\(\kappa \) parameter weighting adaptive expectations vs. regressive expectations in revisions of the inflation climate
\(\mu \) actual markup rate in chapter 5; same as \(\mu^* \) otherwise
\(\mu^* \) target markup rate over unit labour costs
\(\xi \) relative excess demand: \(\xi = (Y^d - Y)/Y \)
\(\pi \) general inflation climate; except in chapter 1, section 3, where \(\pi \) denotes inflation
\(\theta \) same as \(\theta \) (in chapters 2 and 3)
\(\theta' \) tax parameter for \(T^c \) (net of interest): \(T^c - iB/p = \theta K \)
\(\tau_w \) tax rate on wages
\(\phi \) flexibility term in the nonlinear investment function in chapters 6 and 8: \(\phi = \phi(u, q) \)
\(\omega \) real wage rate, deflated by trend productivity: \(\omega = (w/p)/\omega' \)