BOUNDARY CONFORMAL FIELD THEORY AND
THE WORLDSHEET APPROACH TO D-BRANES

Boundary conformal field theory is concerned with a class of two-dimensional quantum field theories that display a rich mathematical structure and have many applications, ranging from string theory to condensed matter physics. In particular, the framework allows discussion of strings and branes directly at the quantum level.

Written by internationally renowned experts, this comprehensive introduction to boundary conformal field theory reaches from theoretical foundations to recent developments, with an emphasis on the algebraic treatment of string backgrounds. Topics covered include basic concepts in conformal field theory with and without boundaries, the mathematical description of strings and D-branes, and the geometry of strongly curved spacetime. The book offers insights into string geometry that go beyond classical notions.

Describing the theory from basic concepts, and providing numerous worked examples from conformal field theory and string theory, this reference is of interest to graduate students and researchers in physics and mathematics.

Andreas Recknagel is a member of staff at the Department of Mathematics, King’s College London. His research centres on quantum field theory in two dimensions, in particular conformal field theories and their applications to strings and branes. He is also interested in topological field theory and the relation of non-commutative geometry to quantum field theory.

Volker Schomerus is a Professor and scientist at the Theory Group of DESY, Hamburg. He has worked intensively in quantum field theory, symmetries in physics, non-commutative geometry and string theory, for which he has received several distinctions. He serves on the editorial board of several prestigious journals.
M. Le Bellac *Thermal Field Theory*†
Y. Makeenko *Methods of Contemporary Gauge Theory*
N. Manton and P. Sutcliffe *Topological Solitons*
N. H. March *Liquid Metals: Concepts and Theory*
I. Montvay and G. Münster *Quantum Fields on a Lattice*†
L. O’Raifeartaigh *Group Structure of Gauge Theories*†
T. Ortín *Gravity and Strings*
A. M. Ozorio de Almeida *Hamiltonian Systems: Chaos and Quantization*†
L. Parker and D. Toms *Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity*
R. Penrose and W. Rindler *Spinors and Space-Time Volume 1: Two-Spinor Calculus and Relativistic Fields*†
R. Penrose and W. Rindler *Spinors and Space-Time Volume 2: Spinor and Twistor Methods in Space-Time Geometry*†
S. Pokorski *Gauge Field Theories, 2nd edition*†
J. Polchinski *String Theory Volume 1: An Introduction to the Bosonic String*
J. Polchinski *String Theory Volume 2: Superstring Theory and Beyond*
J. C. Polkinghorne *Models of High Energy Processes*†
V. N. Popov *Functional Integrals and Collective Excitations*†
L. V. Prokhorov and S. V. Shabanov *Hamiltonian Mechanics of Gauge Systems*
A. Recknagel and V. Schomerus *Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes*
R. J. Rivers *Path Integral Methods in Quantum Field Theory*†
R. G. Roberts *The Structure of the Proton: Deep Inelastic Scattering*†
C. Rovelli *Quantum Gravity*†
W. C. Saslaw *Gravitational Physics of Stellar and Galactic Systems*†
R. N. Sen *Causality, Measurement Theory and the Differentiable Structure of Space-Time*
M. Shifman and A. Yu. *Supersymmetric Solitons*
H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt *Exact Solutions of Einstein’s Field Equations, 2nd edition*†
J. Stewart *Advanced General Relativity*†
J. C. Taylor *Gauge Theories of Weak Interactions*†
T. Thiemann *Modern Canonical Quantum General Relativity*
D. J. Toms *The Schwinger Action Principle and Effective Action*†
A. Vilenkin and E. P. S. Shellard *Cosmic Strings and Other Topological Defects*
R. S. Ward and R. O. Wells, Jr *Twistor Geometry and Field Theory*
E. J. Weinberg *Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics*
J. R. Wilson and G. J. Mathews *Relativistic Numerical Hydrodynamics*

† Issued as a paperback
Boundary Conformal Field Theory
and the Worldsheet Approach to
D-Branes

ANDREAS RECKNAGEL
King's College, London

VOLKER SCHOMERUS
DESY, Hamburg
To our parents

to Elena

und Hans Recknagel zum Angedenken
Contents

Introduction page 1

1 Free field theory with boundaries 7
 1.1 Free bosonic field theory 7
 1.2 Free fermionic field theory 21
 1.A Additional material 30

2 Superstrings and branes 44
 2.1 A very brief reminder of closed string theory 44
 2.2 Branes and boundary conformal field theory 56
 2.A Additional material 72

3 Conformal field theory on the plane 86
 3.1 Symmetry algebras and highest weight representations 87
 3.2 Fields and representation theoretic constraints on correlation functions 98
 3.3 Non-linear constraints 113

4 Boundary conformal field theory 121
 4.1 Defining data of a conformal boundary condition 123
 4.2 Boundary fields 132
 4.3 The boundary state formalism 139
 4.4 Non-linear constraints 152
 4.A Additional material 165

5 Perturbations of boundary conformal field theories 190
 5.1 Relevant boundary perturbations 192
 5.2 Marginal boundary deformations 202
 5.3 An example: boundary deformations for \(c = 1 \) theories 209
 5.A Additional material 221

6 The Wess–Zumino–Witten model on SU(2) 235
 6.1 Basic material 235
 6.2 SU(2) WZW model as bulk and boundary CFT 241
 6.3 Geometric interpretation at large volume 245
 6.4 WZW cosets and orbifolds 259
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Gepner model boundary states and Calabi–Yau branes</td>
<td>267</td>
</tr>
<tr>
<td>7.1</td>
<td>Gepner models in the bulk</td>
<td>268</td>
</tr>
<tr>
<td>7.2</td>
<td>Boundary states for Gepner models</td>
<td>283</td>
</tr>
<tr>
<td>7.3</td>
<td>On the geometric and physical content of the boundary states</td>
<td>295</td>
</tr>
<tr>
<td>7.4</td>
<td>Topological branes and matrix factorisations</td>
<td>305</td>
</tr>
</tbody>
</table>

Appendix 314
References 318
Index 337