This fully revised and updated text is a comprehensive introduction to astronomical objects and phenomena. By applying some basic physical principles to a variety of situations, students will learn how to relate everyday physics to the astronomical world. Starting with the simplest objects, the text contains thorough explanations of how and why astronomical phenomena occur, and how astronomers collect and interpret information about stars, galaxies and the Solar System. The text looks at the properties of stars, star formation and evolution; neutron stars and black holes; the nature of galaxies; and the structure of the universe. It examines the past, present and future states of the universe; and final chapters use the concepts that have been developed to study the Solar System and its formation; the possibility of finding other planetary systems; and the search for extraterrestrial life. This comprehensive text contains useful equations, chapter summaries, worked examples and end-of-chapter problem sets. It is suitable for undergraduate students taking a first course in astronomy, and assumes a basic knowledge of physics with calculus.

Marc L. Kutner obtained his doctorate in physics from Columbia University in 1972. He has been a Visiting Scientist in the Department of Astronomy at the University of Texas at Austin since 1998, prior to which he was Professor in the Department of Physics and Astronomy at the Rensselaer Polytechnic Institute, New York, and Visiting Scientist at the National Radio Observatory, Tucson, Arizona. His main area of research involves the use of radio astronomy to study of star formation in the Milky Way and other galaxies. He has also done some research in cosmology. Professor Kutner has published three successful textbooks and over one hundred research papers.
Astronomy: A Physical Perspective

Marc L. Kutner
Contents

List of abbreviations used in the figure credits
Preface

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xv</td>
</tr>
<tr>
<td>xvii</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 An understandable universe
1.2 The scale of the universe

Part I Properties of ordinary stars

2 Continuous radiation from stars
2.1 Brightness of starlight
2.2 The electromagnetic spectrum
2.3 Colors of stars
2.3.1 Quantifying color
2.3.2 Blackbodies
2.4 Planck’s law and photons
2.4.1 Planck’s law
2.4.2 Photons
2.5 Stellar colors
2.6 Stellar distances

Chapter summary
Questions
Problems
Computer problems

3 Spectral lines in stars

3.1 Spectral lines
3.2 Spectral types
3.3 The origin of spectral lines
3.3.1 The Bohr atom
3.3.2 Quantum mechanics
3.4 Formation of spectral lines
3.4.1 Excitation
3.4.2 Ionization
3.4.3 Intensities of spectral lines
3.5 The Hertzsprung–Russell diagram

Chapter summary
Questions
Problems
Computer problems

4 Telescopes

4.1 What a telescope does
4.1.1 Light gathering
4.1.2 Angular resolution
4.1.3 Image formation in a camera
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 Refracting telescopes</td>
</tr>
<tr>
<td>4.3 Reflecting telescopes</td>
</tr>
<tr>
<td>4.4 Observatories</td>
</tr>
<tr>
<td>4.4.1 Ground-based observing</td>
</tr>
<tr>
<td>4.4.2 Observations from space</td>
</tr>
<tr>
<td>4.5 Data handling</td>
</tr>
<tr>
<td>4.5.1 Detection</td>
</tr>
<tr>
<td>4.5.2 Spectroscopy</td>
</tr>
<tr>
<td>4.6 Observing in the ultraviolet</td>
</tr>
<tr>
<td>4.7 Observing in the infrared</td>
</tr>
<tr>
<td>4.8 Radio astronomy</td>
</tr>
<tr>
<td>4.9 High energy astronomy</td>
</tr>
<tr>
<td>Chapter summary</td>
</tr>
<tr>
<td>Questions</td>
</tr>
<tr>
<td>Problems</td>
</tr>
<tr>
<td>Computer problems</td>
</tr>
<tr>
<td>5 Binary stars and stellar masses</td>
</tr>
<tr>
<td>5.1 Binary stars</td>
</tr>
<tr>
<td>5.2 Doppler shift</td>
</tr>
<tr>
<td>5.2.1 Moving sources and observers</td>
</tr>
<tr>
<td>5.2.2 Circular orbits</td>
</tr>
<tr>
<td>5.3 Binary stars and circular orbits</td>
</tr>
<tr>
<td>5.4 Elliptical orbits</td>
</tr>
<tr>
<td>5.4.1 Geometry of ellipses</td>
</tr>
<tr>
<td>5.4.2 Angular momentum in elliptical orbits</td>
</tr>
<tr>
<td>5.4.3 Energy in elliptical orbits</td>
</tr>
<tr>
<td>5.4.4 Observing elliptical orbits</td>
</tr>
<tr>
<td>5.5 Stellar masses</td>
</tr>
<tr>
<td>5.6 Stellar sizes</td>
</tr>
<tr>
<td>Chapter summary</td>
</tr>
<tr>
<td>Questions</td>
</tr>
<tr>
<td>Problems</td>
</tr>
<tr>
<td>Computer problems</td>
</tr>
<tr>
<td>6 The Sun: a typical star</td>
</tr>
<tr>
<td>6.1 Basic structure</td>
</tr>
<tr>
<td>6.2 Elements of radiation transport theory</td>
</tr>
<tr>
<td>6.3 The photosphere</td>
</tr>
<tr>
<td>6.3.1 Appearance of the photosphere</td>
</tr>
<tr>
<td>6.3.2 Temperature distribution</td>
</tr>
<tr>
<td>6.3.3 Doppler broadening of spectral lines</td>
</tr>
<tr>
<td>6.4 The chromosphere</td>
</tr>
<tr>
<td>6.5 The corona</td>
</tr>
<tr>
<td>6.5.1 Parts of the corona</td>
</tr>
<tr>
<td>6.5.2 Temperature of the corona</td>
</tr>
<tr>
<td>6.6 Solar activity</td>
</tr>
<tr>
<td>6.6.1 Sunspots</td>
</tr>
<tr>
<td>6.6.2 Other activity</td>
</tr>
<tr>
<td>Chapter summary</td>
</tr>
<tr>
<td>Questions</td>
</tr>
</tbody>
</table>
Contents

Problems 120
Computer problems 121

Part II Relativity 123

7 Special relativity 125

7.1 Foundations of special relativity 125

7.1.1 Problems with electromagnetic radiation 125
7.1.2 Problems with simultaneity 127

7.2 Time dilation 128
7.3 Length contraction 129
7.4 The Doppler shift 131

7.4.1 Moving source 131
7.4.2 Moving observer 131
7.4.3 General result 132

7.5 Space-time 132

7.5.1 Four-vectors and Lorentz transformation 132
7.5.2 Energy and momentum 135
Chapter summary 136
Questions 136
Problems 137
Computer problems 137

8 General relativity 139

8.1 Curved space-time 139
8.2 Principle of equivalence 141

8.3 Tests of general relativity 143

8.3.1 Orbiting bodies 143
8.3.2 Bending electromagnetic radiation 144
8.3.3 Gravitational redshift 145
8.3.4 Gravitational radiation 147
8.3.5 Competing theories 148

8.4 Black holes 148

8.4.1 The Schwarzschild radius 148
8.4.2 Approaching a black hole 149
8.4.3 Stellar black holes 150
8.4.4 Non-stellar black holes 151

Chapter summary 152
Questions 152
Problems 152
Computer problems 153

Part III Stellar evolution 155

9 The main sequence 157

9.1 Stellar energy sources 157

9.1.1 Gravitational potential energy of a sphere 157
9.1.2 Gravitational lifetime for a star 158
9.1.3 Other energy sources 158
9.2 Nuclear physics 159
 9.2.1 Nuclear building blocks 159
 9.2.2 Binding energy 160
 9.2.3 Nuclear reactions 161
 9.2.4 Overcoming the fusion barrier 162
9.3 Nuclear energy for stars 164
9.4 Stellar structure 168
 9.4.1 Hydrostatic equilibrium 168
 9.4.2 Energy transport 170
9.5 Stellar models 171
9.6 Solar neutrinos 172
 Chapter summary 175
 Questions 175
 Problems 176
 Chapter problems 176
10 Stellar old age 177
 10.1 Evolution off the main sequence 177
 10.1.1 Low mass stars 177
 10.1.2 High mass stars 179
 10.2 Cepheid variables 179
 10.2.1 Variable stars 179
 10.2.2 Cepheid mechanism 180
 10.2.3 Period–luminosity relation 181
 10.3 Planetary nebulae 183
 10.4 White dwarfs 186
 10.4.1 Electron degeneracy 186
 10.4.2 Properties of white dwarfs 188
 10.4.3 Relativistic effects 189
 Chapter summary 190
 Questions 190
 Problems 190
 Computer problems 191
11 The death of high mass stars 193
 11.1 Supernovae 193
 11.1.1 Core evolution of high mass stars 193
 11.1.2 Supernova remnants 194
 11.2 Neutron stars 197
 11.2.1 Neutron degeneracy pressure 197
 11.2.2 Rotation of neutron stars 198
 11.2.3 Magnetic fields of neutron stars 199
 11.3 Pulsars 199
 11.3.1 Discovery 199
 11.3.2 What are pulsars? 201
 11.3.3 Period changes 203
 11.4 Pulsars as probes of interstellar space 205
 11.5 Stellar black holes 206
 Chapter summary 206
 Questions 206
12 Evolution in close binaries
12.1 Close binaries
12.2 Systems with white dwarfs
12.3 Neutron stars in close binary systems
12.4 Systems with black holes
12.5 An unusual object: SS433
Chapter summary
Questions
Problems
Computer problems

13 Clusters of stars
13.1 Types of clusters
13.2 Distances to moving clusters
13.3 Clusters as dynamical entities
13.3.1 The virial theorem
13.3.2 Energies
13.3.3 Relaxation time
13.3.4 Virial masses for clusters
13.4 HR diagrams for clusters
13.5 The concept of populations
Chapter summary
Questions
Problems
Computer problem

Part IV The Milky Way
14 Contents of the interstellar medium
14.1 Overview
14.2 Interstellar extinction
14.2.1 The effect of extinction
14.2.2 Star counting
14.2.3 Reddening
14.2.4 Extinction curves
14.2.5 Polarization
14.2.6 Scattering vs. absorption
14.3 Physics of dust grains
14.3.1 Size and shape
14.3.2 Composition
14.3.3 Electric charge
14.3.4 Temperature
14.3.5 Evolution
14.4 Interstellar gas
14.4.1 Optical and ultraviolet studies
14.4.2 Radio studies of atomic hydrogen
14.5 Interstellar molecules 251
14.5.1 Discovery 251
14.5.2 Interstellar chemistry 253
14.5.3 Observing interstellar molecules 254
14.6 Thermodynamics of the interstellar medium 258
Chapter summary 259
Questions 260
Problems 261
Computer problems 262

15 Star formation 263
15.1 Gravitational binding 263
15.2 Problems in star formation 266
15.3 Molecular clouds and star formation 267
15.4 Magnetic effects and star formation 270
15.5 Protostars 272
15.5.1 Luminosity of collapsing clouds 272
15.5.2 Evolutionary tracks for protostars 273
15.6 Regions of recent star formation 274
15.6.1 HII regions 274
15.6.2 Masers 280
15.6.3 Energetic flows 282
15.6.4 T Tauri stars and related objects 285
15.7 Picture of a star forming region: Orion 287
Chapter summary 289
Questions 290
Problems 291
Computer problems 292

16 The Milky Way galaxy 293
16.1 Overview 293
16.2 Differential galactic rotation 294
16.2.1 Rotation and mass distribution 294
16.2.2 Rotation curve and Doppler shift 296
16.3 Determination of the rotation curve 300
16.4 Average gas distribution 302
16.5 Spiral structure in the Milky Way 304
16.5.1 Optical tracers of spiral structure 304
16.5.2 Radio tracers of spiral structure 304
16.6 The galactic center 306
16.6.1 Distribution of material near the center 306
16.6.2 A massive black hole? 308
Chapter summary 310
Questions 311
Problems 311
Computer problems 312
CONTENTS

Problems 374
Computer problems 375

20 Cosmology 377
20.1 The scale of the universe 377
20.2 Expansion of the universe 378
 20.2.1 Olbers's paradox 378
 20.2.2 Keeping track of expansion 380
20.3 Cosmology and Newtonian gravitation 381
20.4 Cosmology and general relativity 384
 20.4.1 Geometry of the universe 384
 20.4.2 Cosmological redshift 386
20.5 Is the universe open or closed? 388
Chapter summary 390
Questions 392
Problems 393
Computer problems 394

21 The big bang 395
21.1 The cosmic background radiation 395
 21.1.1 Origin of the cosmic background radiation 395
 21.1.2 Observations of the cosmic background radiation 398
21.2 Big-bang nucleosynthesis 401
21.3 Fundamental particles and forces 407
 21.3.1 Fundamental particles 410
 21.3.2 Fundamental forces 411
 21.3.3 The role of symmetries 412
 21.3.4 Color 413
 21.3.5 The unification of forces 416
21.4 Merging of physics of the big and small 417
 21.4.1 Back to the earliest times 417
 21.4.2 Inflation 419
 21.4.3 Galaxy formation 420
21.4.4 Estimates of values of cosmological parameters 420
Chapter summary 422
Questions 423
Problems 424
Computer problems 425

Part VI The Solar System 427
22 Overview of the Solar System 429
22.1 Motions of the planets 430
22.2 The motion of the Moon 435
22.3 Studying the Solar System 438
22.4 Traveling through the Solar System 439
Chapter summary 443
Questions 444
Problems	444
Computer problems	445
23 The Earth and the Moon	447
23.1 History of the Earth	447
23.1.1 Early history	447
23.1.2 Radioactive dating	448
23.1.3 Plate tectonics	450
23.2 Temperature of a planet	452
23.3 The atmosphere	454
23.3.1 Pressure distribution	455
23.3.2 Temperature distribution	457
23.3.3 Retention of an atmosphere	462
23.3.4 General circulation	463
23.4 The magnetosphere	465
23.5 Tides	467
23.6 The Moon	469
23.6.1 The lunar surface	470
23.6.2 The lunar interior	473
23.6.3 Lunar origin	474
Chapter summary	475
Questions	476
Problems	477
Computer problems	478
24 The inner planets	479
24.1 Basic features	479
24.1.1 Mercury	479
24.1.2 Venus	479
24.1.3 Mars	480
24.1.4 Radar mapping of planets	481
24.2 Surfaces	483
24.3 Interiors	490
24.3.1 Basic considerations	490
24.3.2 Results	491
24.4 Atmospheres	491
24.5 Moons	494
Chapter summary	494
Questions	495
Problems	495
Computer problems	496
25 The outer planets	497
25.1 Basic features	497
25.2 Atmospheres	500
25.3 Interiors	506
25.4 Rings	506
25.4.1 Basic properties	507
25.4.2 Ring dynamics	509
CONTENTS

25.5 Moons 512
 Chapter summary 519
 Questions 520
 Problems 520
 Computer problem 521

26 Minor bodies in the Solar System 523
 26.1 Pluto 523
 26.2 Comets 524
 26.3 Meteoroids 530
 26.4 Asteroids 532
 Chapter summary 534
 Questions 534
 Problems 535
 Computer problem 535

27 The origin of life 537
 27.1 Origin of the Solar System 537
 27.2 Chemistry on the early Earth 540
 27.3 Origin of life on Earth 541
 27.4 Life in the rest of the Solar System? 543
 27.5 Other planetary systems? 544
 27.6 Searches for extraterrestrial intelligence 547
 Chapter summary 549
 Questions 550
 Problems 550
 Computer problems 550

Appendix A Glossary of symbols 551
Appendix B Physical and astronomical constants 553
Appendix C Units and conversions 554
Appendix D Planet and satellite properties 555
Appendix E Properties of main sequence stars 558
Appendix F Astronomical coordinates and timekeeping 559
Appendix G Abundances of the elements 562

Index 565
Abbreviations used in the figure credits

Figure credits are given in the captions. Abbreviations used are as follows.

2MASS Two Micron All Sky Survey
AUI Associated Universities Inc.
AURA Association of Universities for Research in Astronomy
Caltech California Institute of Technology
CFA Center for Astrophysics
ESA European Space Agency
ESO European Southern Observatory
GSFC ADF Goddard Space Flight Center Astrophysics Data Facility
HST Hubble Space Telescope
IFA Institute for Astronomy
IRAM Institut de Radioastronomie Millimétrique
ISO Infrared Space Observatory
JCBT James Clerk Maxwell Telescope
MIT Massachusetts Institute of Technology
MPIfR Max Planck Institut für Radioastronomie
NASA National Aeronautics and Space Administration
NM Tech New Mexico Institute of Mining and Technology
NOAA National Oceanographic and Atmospheric Administration
NOAO National Optical Astronomy Observatory (operated by AURA under contract with the NSF, all rights reserved)
NRAO National Radio Astronomy Observatory (operated by AUI, under contract with the NSF)
NSF National Science Foundation
ONR Office of Naval Research
SCUBA Submillimeter Common User Bolometer Array
STScI Space Telescope Science Institute (operated by AURA under contract with NASA)
UCLA University of California at Los Angeles
USGS US Geological Survey
The study of astronomy has blossomed in a variety of ways in the last decade of the 20th century. Every part of the electromagnetic spectrum has seen a revolution in observing techniques. While much of this has been on the ground, space-based observing has come into its own, as we are seeing the results of second and third generation space-based telescopes. These have provided sensitivity and clarity that have revolutionized all subfields in astronomy and created some new ones. These observational developments have been supplemented by massive improvements in computing power, allowing for the processing of large amounts of astronomical data, and the theoretical modeling of the results.

The most amazing aspect of all of this progress is that we can still provide reasonable answers to the naive question, 'How does it all work?' As our astronomical horizon expands, we can still use familiar physics to explain the wealth of phenomena. Even when the explanation at the research level requires a complex application of certain physical laws, there is usually still a way of understanding the phenomena based on introductory level physics. Perhaps this is just the realization that the laws of physics are small in number but apply universally. There are a few exceptions, where the astronomical problems help drive back the frontiers of physics, but these can be explained in more familiar terms.

This book is the successor to Astronomy: a Physical Perspective, published by Wiley in 1986. I am grateful to the loyal audience that book developed, and for their encouragement to work on this new version.

I am grateful to Simon Mitton at Cambridge University Press, who shared my view that a 'higher level' book could still be visually attractive. I am also grateful to Jacqueline Garget, who believed in this project, seeing it through a few rough early reviews to its completion. At every stage, she always knew exactly how to answer my email questions to keep me going.

Three professors, Stephen Boughn (Haverford), James Houck (Cornell) and Judith Pipher (Rochester) class-tested various versions of this manuscript. I appreciate their patience and their feedback. I also appreciate their students taking the time to use a 'book' in a non-standard form, and to give comments.

Special thanks go to Nadine Dinshaw, a friend/colleague, who read the whole manuscript in an early form. Her comments and support were very helpful at that early stage.

At every stage the manuscript benefited greatly from the feedback from reviewers who read all or various parts of the manuscript. Some were anonymous, and others were: Imke DePater (University of California at Berkeley), Debra Elmegreen (Vassar), Andrea Ghez (UCLA), Steven Gottesman (University of Florida), Richard Griffiths (Carnegie Mellon), David Helfand (Columbia), Lee Mundy (University of Maryland), James Napolitano (Rensselaer), and Heidi Newberg (Rensselaer).

Many astronomers and physicists have contributed data and illustrations which I have used directly. They are too numerous to mention here, but are credited in the figure captions. My special thanks go to those who were anxious for me to have the most recent data or best pictures. Gathering these figures proved to be frustrating sometimes. However, the contact that I had with the vast majority was very rewarding. I would also like to thank an extraordinary copy editor, Irene Pizzie, for always knowing what I meant to

Preface
say, and production manager, Catherine Garland, for keeping the project moving along, and always keeping me in the loop.

This project started during my three-year stay at the National Radio Astronomy Observatory, in Tucson. I am thankful to Paul Vanden Bout (NRAO director) for helping me settle into that position, and to all the people in Tucson who provided a stimulating atmosphere and a view of the Santa Catalina Mountains. The project has finished during my stay at the University of Texas, Austin. I am grateful to Frank Bash (McDonald Observatory director) for arranging that position and always having an open door. I thank my colleagues here in Austin for providing a stimulating environment also.

On the personal level, I got my start in astronomy when my mother encouraged me to take courses at the Hayden Planetarium, in New York. I am also grateful to my two sons, Eric and Jeff, who never stop asking questions.

Most important, at many levels, this book would not be here without my best colleague and best friend, Kathryn Mead. She encouraged me to tackle hard tasks, from running marathons, to biking centuries, to refereeing soccer, to writing books. Her drive and curiosity led to our most important discovery (molecular clouds in the outer Milky Way). More immediately, she also helped dress up those figures for this book that needed it the most.