STOCHASTIC CALCULUS AND DIFFERENTIAL EQUATIONS FOR PHYSICS AND FINANCE

Stochastic calculus provides a powerful description of a specific class of stochastic processes in physics and finance. However, many econophysicists struggle to understand it. This book presents the subject simply and systematically, giving graduate students and practitioners a better understanding and enabling them to apply the methods in practice.

The book develops Itô calculus and Fokker–Planck equations as parallel approaches to stochastic processes, using those methods in a unified way. The focus is on nonstationary processes, and statistical ensembles are emphasized in time series analysis. Stochastic calculus is developed using general martingales. Scaling and fat tails are presented via diffusive models. Fractional Brownian motion is thoroughly analyzed and contrasted with Itô processes. The Chapman–Kolmogorov and Fokker–Planck equations are shown in theory and by example to be more general than a Markov process. The book also presents new ideas in financial economics and a critical survey of econometrics.

JOSEPH L. McCauley is Professor of Physics at the University of Houston. During his career he has contributed to several fields, including statistical physics, superfluids, nonlinear dynamics, cosmology, econophysics, economics, and finance theory.
STOCHASTIC CALCULUS AND DIFFERENTIAL EQUATIONS FOR
PHYSICS AND FINANCE

JOSEPH L. McCauley
University of Houston
For our youngest ones,
Will, Justin, Joshua, Kayleigh, and Charlie
Contents

Abbreviations

<table>
<thead>
<tr>
<th>Introduction</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Random variables and probability distributions</td>
<td>5</td>
</tr>
<tr>
<td>1.1 Particle descriptions of partial differential equations</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Random variables and stochastic processes</td>
<td>7</td>
</tr>
<tr>
<td>1.3 The n-point probability distributions</td>
<td>9</td>
</tr>
<tr>
<td>1.4 Simple averages and scaling</td>
<td>10</td>
</tr>
<tr>
<td>1.5 Pair correlations and 2-point densities</td>
<td>11</td>
</tr>
<tr>
<td>1.6 Conditional probability densities</td>
<td>12</td>
</tr>
<tr>
<td>1.7 Statistical ensembles and time series</td>
<td>13</td>
</tr>
<tr>
<td>1.8 When are pair correlations enough to identify a stochastic process?</td>
<td>16</td>
</tr>
<tr>
<td>Exercises</td>
<td>17</td>
</tr>
</tbody>
</table>

2 Martingales, Markov, and nonstationarity	18
2.1 Statistically independent increments	18
2.2 Stationary increments	19
2.3 Martingales	20
2.4 Nonstationary increment processes	21
2.5 Markov processes	22
2.6 Drift plus noise	22
2.7 Gaussian processes	23
2.8 Stationary vs. nonstationary processes	24
Exercises	26

3 Stochastic calculus	28
3.1 The Wiener process	28
3.2 Ito’s theorem	29
3.3 Ito’s lemma 30
3.4 Martingales for greenhorns 31
3.5 First-passage times 33
 Exercises 35

4 Ito processes and Fokker–Planck equations 37
4.1 Stochastic differential equations 37
4.2 Ito’s lemma 39
4.3 The Fokker–Planck pde 39
4.4 The Chapman–Kolmogorov equation 41
4.5 Calculating averages 42
4.6 Statistical equilibrium 43
4.7 An ergodic stationary process 45
4.8 Early models in statistical physics and finance 45
4.9 Nonstationary increments revisited 48
 Exercises 48

5 Selfsimilar Ito processes 50
5.1 Selfsimilar stochastic processes 50
5.2 Scaling in diffusion 51
5.3 Superficially nonlinear diffusion 53
5.4 Is there an approach to scaling? 54
5.5 Multiaffine scaling 55
 Exercises 56

6 Fractional Brownian motion 57
6.1 Introduction 57
6.2 Fractional Brownian motion 57
6.3 The distribution of fractional Brownian motion 60
6.4 Infinite memory processes 61
6.5 The minimal description of dynamics 62
6.6 Pair correlations cannot scale 63
6.7 Semimartingales 64
 Exercises 65

7 Kolmogorov’s pdes and Chapman–Kolmogorov 66
7.1 The meaning of Kolmogorov’s first pde 66
7.2 An example of backward-time diffusion 68
7.3 Deriving the Chapman–Kolmogorov equation for an Ito process 68
 Exercise 70
Contents

8 Non-Markov Ito processes 71
 8.1 Finite memory Ito processes? 71
 8.2 A Gaussian Ito process with 1-state memory 72
 8.3 McKean’s examples 74
 8.4 The Chapman–Kolmogorov equation 78
 8.5 Interacting system with a phase transition 79
 8.6 The meaning of the Chapman–Kolmogorov equation 81
 Exercise 82
9 Black–Scholes, martingales, and Feynman–Kac 83
 9.1 Local approximation to sdes 83
 9.2 Transition densities via functional integrals 83
 9.3 Black–Scholes-type pdes 84
 Exercise 85
10 Stochastic calculus with martingales 86
 10.1 Introduction 86
 10.2 Integration by parts 87
 10.3 An exponential martingale 88
 10.4 Girsanov’s theorem 89
 10.5 An application of Girsanov’s theorem 91
 10.6 Topological inequivalence of martingales with Wiener processes 93
 10.7 Solving diffusive pdes by running an Ito process 96
 10.8 First-passage times 97
 10.9 Martingales generally seen 102
 Exercises 105
11 Statistical physics and finance: A brief history of each 106
 11.1 Statistical physics 106
 11.2 Finance theory 110
 Exercise 115
12 Introduction to new financial economics 117
 12.1 Excess demand dynamics 117
 12.2 Adam Smith’s unreliable hand 118
 12.3 Efficient markets and martingales 120
 12.4 Equilibrium markets are inefficient 123
 12.5 Hypothetical FX stability under a gold standard 126
 12.6 Value 131
Contents

12.7 Liquidity, reversible trading, and fat tails vs. crashes 132
12.8 Spurious stylized facts 143
12.9 An sde for increments 146
 Exercises 147
13 Statistical ensembles and time-series analysis 148
 13.1 Detrending economic variables 148
 13.2 Ensemble averages and time series 149
 13.3 Time-series analysis 152
 13.4 Deducing dynamics from time series 162
 13.5 Volatility measures 167
 Exercises 168
14 Econometrics 169
 14.1 Introduction 169
 14.2 Socially constructed statistical equilibrium 172
 14.3 Rational expectations 175
 14.4 Monetary policy models 177
 14.5 The monetarist argument against government intervention 179
 14.6 Rational expectations in a real, nonstationary market 180
 14.7 Volatility, ARCH, and GARCH 192
 Exercises 195
15 Semimartingales 196
 15.1 Introduction 196
 15.2 Filtrations 197
 15.3 Adapted processes 197
 15.4 Martingales 198
 15.5 Semimartingales 198
 Exercise 199

References 200
Index 204
Abbreviations

B(t), Wiener process
x(t) or X(t), random variable at time t in a stochastic process
f_n(x_n, t_n; ...; x_1, t_1), n-point density of a continuous random variable x at n different
times t_1 ≤ t_2 ≤ ... ≤ t_n.

p_2(x, t|y, s), conditional density to get x at time t, given that y was observed at
time s < t.

⟨x(t)⟩_c = \int dx p_2(x, t|y, s), avg. of x at time t conditioned on having observed y
at time s. Using a bracket to denote an average is standard in physics since the
time of Dirac.

A(x, t), dynamical variable, meaning a function of a random variable x and also
the time t.

⟨A(t)⟩ = ∫ dx A(x, t) f_1(x, t), absolute average of a dynamical variable A.

⟨x(t)y(s)⟩ = ∫ dx dy x f_2(x, y), pair correlation function

⟨x(t)⟩ = ∫ dx xp_2(x, t|y, s) f_1(y, s), absolute average of x at time t; ⟨x(t)⟩ =
∫ dx A(x) f_1(x, t) since ∫ dy p_2(x, t|y, s) = 1.

⟨x(t)⟩ = ∫ dx xp_2(x, t|y, s) = y, martingale process
x(t, T) = x(t + T) − x(t), an increment/displacement/difference

⟨x^2(t, T)⟩, mean square fluctuation about an arbitrary point x observed at time t.

dX = R(X, t) dt + b(X, s) dB(t), Ito process;

b^2(x, t) = D(x, t) is the diffusion coefficient

M(t), a martingale in Ito calculus, dM(t) = ±√D(M, t) dB(t)

{X} = ∫ dX^2 where (dX)^2 = D(X, t) dt^1

{X, Y} = \frac{1}{2} (\{X + Y\} − \{X − Y\})

fBm, fractional Brownian motion, a mathematical model with stationary incre-
ments and long-time correlations

ratex, rational expectations, a mathematized ideology

1 This is a special notation used in Chapter 10 where stochastic calculus is extended to martingales dX =
b(X, t) dB(t). It differs from Durrett’s notation because we use his bracket symbol ⟨⟩ to denote averages.