The Physiology of Flowering Plants

Fourth Edition

This latest edition of *The Physiology of Flowering Plants* has been completely updated to cover the explosion of interest in plant biology. A whole-plant approach has been used to produce an integrated view of plant function, covering both the fundamentals of whole plant physiology and the latest developments in molecular biology. New developments in molecular techniques are explained within practical applications such as genetically modified plants. The book further examines:

- photosynthesis, respiration, plant growth and development;
- nutrition, water relations, photomorphogenesis and stress physiology;
- function, with particular attention to adaptations to different habitats.

Each chapter is fully referenced with suggestions for complementary reading including references to original research papers.

The Physiology of Flowering Plants is valuable to both undergraduate and postgraduate students studying plant biology.

Helgi Ópik was Senior Lecturer in the School of Biological Sciences at the University of Wales, Swansea until her retirement. Throughout her career she has taught plant physiology at all undergraduate levels, and since retiring has lectured in plant physiology for adult education. Her research interests have included plant respiration and ultrastructure, always aiming at integration of structure and physiological function.

Stephen Rolfe was awarded a European Molecular Biology Fellowship and undertook postdoctoral research on the phytochrome regulation of gene expression at the University of California, Los Angeles. He took up a post at the Department of Animal and Plant Sciences, University of Sheffield in 1991. His research interests include the study of photosynthesis and primary plant metabolism, with a special interest in non-invasive imaging techniques.
The Physiology of Flowering Plants

Fourth Edition

Helgi Öpik
Formerly Senior Lecturer,
School of Biological Sciences,
University of Wales,
Swansea

Stephen A. Rolfe
Senior Lecturer,
Department of Animal and Plant Sciences,
University of Sheffield

Academic Consultant Editor

Arthur J. Willis
Emeritus Professor,
University of Sheffield
Contents

Preface

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>1.1</td>
<td>Appreciating plants</td>
</tr>
<tr>
<td>1.2</td>
<td>What kind of plant physiology?</td>
</tr>
<tr>
<td>1.3</td>
<td>Molecular biology and plant physiology: the integration of disciplines</td>
</tr>
<tr>
<td>1.4</td>
<td>Outline of the text</td>
</tr>
</tbody>
</table>

Part I Nutrition and transport

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Flow of energy and carbon through the plant photosynthesis and respiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Flow of energy and carbon through the plant photosynthesis and respiration</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.2</td>
<td>Energy flow and carbon turnover in the biosphere</td>
</tr>
<tr>
<td>2.3</td>
<td>Photosynthesis: light absorption and utilization</td>
</tr>
<tr>
<td>2.4</td>
<td>The fixation of carbon dioxide</td>
</tr>
<tr>
<td>2.5</td>
<td>Limiting factors for photosynthesis</td>
</tr>
<tr>
<td>2.6</td>
<td>The efficiency of energy conversion in photosynthesis</td>
</tr>
<tr>
<td>2.7</td>
<td>Photosynthesis and the increase in atmospheric carbon dioxide</td>
</tr>
<tr>
<td>2.8</td>
<td>Respiration: the oxidative breakdown of organic compounds</td>
</tr>
<tr>
<td>2.9</td>
<td>Terminal oxidation and oxidative phosphorylation</td>
</tr>
<tr>
<td>2.10</td>
<td>Anaerobic respiration</td>
</tr>
<tr>
<td>2.11</td>
<td>Respiration and plant activity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Water relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Water relations</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.2</td>
<td>Water movement and energy: the concept of water potential</td>
</tr>
<tr>
<td>3.3</td>
<td>Water potentials of plant cells and tissues</td>
</tr>
<tr>
<td>3.4</td>
<td>Water relations of whole plants and organs</td>
</tr>
<tr>
<td>3.5</td>
<td>The transport of solutes in the xylem</td>
</tr>
<tr>
<td>3.6</td>
<td>Water uptake and loss: control by environmental and plant factors</td>
</tr>
<tr>
<td>3.7</td>
<td>Water conservation: xerophytes and xeromorphic characters</td>
</tr>
</tbody>
</table>

Chapter 4 | Mineral nutrition

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Mineral nutrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Mineral nutrition</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>4.2</td>
<td>Essential elements</td>
</tr>
</tbody>
</table>
4.3 Ion uptake and transport in the plant 106
4.4 Nitrogen assimilation, fixation and cycling 122
4.5 Problems with mineral elements: deficiency and toxicity 128

Chapter 5 | Translocation of organic compounds 133
5.1 Introduction 133
5.2 Phloem as the channel for organic translocation 133
5.3 The rate and direction of translocation 139
5.4 Phloem loading and unloading 142
5.5 Partitioning of translocate between sinks: integration at the whole-plant level 146
5.6 The mechanism of phloem translocation 148

Part II Growth and development

Chapter 6 | Growth as a quantitative process 161
6.1 Introduction 161
6.2 The measurement of plant growth 162
6.3 Growth, development and differentiation 163
6.4 Localization of growth in space and time 164
6.5 Conditions necessary for growth 165
6.6 Growth rates 167

Chapter 7 | Plant growth hormones 177
7.1 Introduction 177
7.2 Plant growth hormones 178
7.3 Detection and quantification of hormones in plants 191
7.4 How do plant hormones cause responses? 194

Chapter 8 | Cell growth and differentiation 205
8.1 Introduction 205
8.2 Meristems and cell division 205
8.3 Mitochondrial and plastid division 211
8.4 Cell expansion: mechanism and control 213
8.5 Cell differentiation 218

Chapter 9 | Vegetative development 221
9.1 Introduction 221
9.2 The structure and activity of the shoot apical meristem 221
9.3 Organ formation 225
9.4 Secondary growth 227
9.5 Development of the leaf 228
9.6 The structure and activity of the root apical meristem 239
Chapter 10 | Photomorphogenesis

10.1 Introduction 246
10.2 The switch from etiolated to de- etiolated growth 247
10.3 Phytochrome and photomorphogenesis 248
10.4 UV-A/blue light photoreceptors (cryptochrome) 255
10.5 Genes controlling etiolated growth 256
10.6 Unravelling photomorphogenesis 257
10.7 Phytochrome signal transduction 263

Chapter 11 | Reproductive development

11.1 Introduction 270
11.2 Juvenility and ‘ripeness to flower’ 270
11.3 The control of flowering by daylength and temperature 271
11.4 Plant size and flowering 277
11.5 The regulation of floral induction is a multifactorial process 279
11.6 Floral development 281
11.7 Pattern development in flowers 287
11.8 The formation of pollen 291
11.9 The formation of the embryo sac 293
11.10 Pollination 295
11.11 Embryo formation 301
11.12 Seeds and nutrition 303
11.13 Fruit development 308
11.14 Seed dormancy 310
11.15 Germination and the resumption of growth 315

Chapter 12 | Growth movements

12.1 Introduction 318
12.2 Nastic responses 318
12.3 Tropisms 320

Chapter 13 | Resistance to stress

13.1 Introduction 344
13.2 Terminology and concepts 344
13.3 Water-deficit stress 346
13.4 Low-temperature stress 354
13.5 High-temperature stress 362
13.6 Relationships between different types of stress resistance: cross-tolerance 366
13.7 Development of stress-resistant crop plants 368
Appendix

A.1 Naming genes, proteins and mutations 373
A.2 Units of measurement 373
A.3 Prefixes for units 375

Index 376
The history of this book dates back to the late 1960s, when the publishers Edward Arnold launched a series of student textbooks as the Contemporary Biology series, designed to provide up-to-date texts at elementary university and final-year school level. One of the first authors who was asked to contribute, on the topic of flowering plant physiology, was Professor H. E. Street, then Professor of Botany at the University of Wales, Swansea. He asked one of us (H.O.) to collaborate, and the first edition was duly published by Edward Arnold in 1970 under the authorship of H. E. Street and Helgi Opik, and entitled The Physiology of Flowering Plants: Their Growth and Development. The emphasis of the text was on the ‘whole plant’ aspects of physiology. The second edition followed in 1976 and the third in 1984, although Professor Street sadly deceased in 1977.

While the second and third editions were still very much revisions of the original text, the longer time interval since the last edition, and the rapid pace at which biological knowledge has grown in the last few decades, have now necessitated a very thorough rewriting of large sections of the book, and the task has been quite challenging in the face of an accumulation of facts that on occasion has seemed quite overwhelming. It is not possible now to interpret many aspects of plant physiology without reference to molecular biology, even when one is basically interested in functioning at the organismal level. This applies particularly to the developmental aspects of physiology. Some reorganization of the text and shift of emphasis has accordingly been necessitated, though we have tried to retain the overall spirit of the original book.

One thing has remained unchanged during the preparation of this book from the first edition to the fourth: the unfailing encouragement and help from our editor, Professor A. J. Willis. Without him, the present text would not have been written. We are also grateful for the support of Dr Ward Cooper, Commissioning Editor, and Dr Alan Crowden, Editorial Director, of Cambridge University Press. Thanks are due for reading, and advising on, parts of the manuscript, to Professor Richard C. Leegood, Professor David Read and Dr Julie Gray of the University of Sheffield.

H.O. would like to acknowledge the generosity of Professor Ray Waters, Head of the School of Biological Sciences at the University of Wales, Swansea, for use of departmental facilities in preparing illustrations. H.O. also would like to thank Ken Jones of the School of Biological Sciences, Swansea, for printing figures; my nephew Kevin Miller and my niece, Heather Nagey, for help with word processing; and Professor Kevin Flynn and Dr Charles Hipkin of the University of Wales, Swansea, for helpful discussions.
We are grateful to all the people who have permitted us to reproduce their published data, and have provided material and helpful advice for figures; particular thanks are due to Professor Jane Sprent and Dr Euan James of the University of Dundee for supplying the original micrograph of bacteroids (Fig. 4.7).