Eruptions that Shook the World

In April 2010 Eyjafjallajökull volcano on Iceland belched out an ash cloud that shut down much of Europe’s airspace for nearly a week. Although only a relatively small eruption, this precipitated the highest level of air travel disruption since the Second World War and it is estimated to have cost the airline industry worldwide over two billion US dollars.

But what does it take for a volcanic eruption to really shake the world? Did volcanic eruptions extinguish the dinosaurs? Did they help humans to evolve and conquer the world, only to decimate their populations with a super-eruption 73,000 years ago? Did they contribute to the ebb and flow of ancient empires, the French Revolution, and the rise of fascism in Europe in the nineteenth century? These are some of the claims made for volcanic cataclysm.

In this book, volcanologist Clive Oppenheimer explores rich geological, historical, archaeological and paleoenvironmental records (such as ice cores and tree rings) to tell the stories behind some of the greatest volcanic events of the past quarter of a billion years. He shows how a forensic approach to volcanology reveals the richness and complexity behind cause and effect, and argues that important lessons for future catastrophe risk management can be drawn from understanding events that took place even at the dawn of human origins.

CLIVE OPPENHEIMER is a Reader in Volcanology and Remote Sensing at the University of Cambridge, and a Research Associate of ‘Le Studium’ Institute for Advanced Studies at ISTO (University of Orléans/CNRS). His research focuses on understanding the chemistry and physics of volcanism, and the climatic and human impacts of eruptions in antiquity. He has carried out fieldwork worldwide in collaboration with archaeologists, atmospheric scientists and other geologists. Since 2003, he has studied the lava lake of Erebus volcano with the US Antarctic Program. In 2005, the Royal Geographical Society presented him with the Murchison Award ‘for publications enhancing the understanding of volcanic processes and impacts’. Dr Oppenheimer is a co-author with Peter Francis of a leading volcanology textbook, and has contributed widely to television and film documentaries on volcanoes, including Werner Herzog’s ‘Encounters at the End of the World’, and most recently, for Discovery, the History Channel, the BBC, Teachers’ TV and National Geographic.
Eruptions that Shook the World

CLIVE OPPENHEIMER
University of Cambridge
Le Studium Institute for Advanced Studies
University of Orléans
Contents

Preface page ix
Acknowledgements xv

1. Fire and brimstone: how volcanoes work 1
 1.1 Origins of volcanoes: the mantle 4
 1.2 Magma 9
 1.3 Eruption parameters 14
 1.4 Summary 21

2. Eruption styles, hazards and ecosystem impacts 22
 2.1 Eruption clouds 23
 2.2 Tephra falls 29
 2.3 Pyroclastic currents & caldera formation 32
 2.4 Lava flows and domes 36
 2.5 Rock avalanches and mudflows 38
 2.6 Tsunami 41
 2.7 Earthquakes 42
 2.8 Volcanic gas emissions 44
 2.9 Recovery of ecosystems 46
 2.10 Volcanic disasters 49
 2.11 Summary 51

3. Volcanoes and global climate change 53
 3.1 Pinatubo’s global cloud 54
 3.2 Atmospheric and climatic change 60
 3.3 Recipe for a climate-forcing eruption 69
 3.4 Summary 76

4. Forensic volcanology 77
 4.1 Reading the rocks 78
 4.2 Ice cores 95
4.3 Tree rings 102
4.4 Summary 106

5. Relics, myths and chronicles 109
5.1 Archaeological perspectives 110
5.2 Oral traditions 123
5.3 Crepuscular lights, cannonades and chronicles 128
5.4 Volcano forensics: a case study 134
5.5 Summary 138

6. Killer plumes 140
6.1 Mass extinctions 141
6.2 More about LIPs 141
6.3 LIP origins 144
6.4 LIPs, bolides and extinctions: the coincidences 148
6.5 Kill mechanisms 155
6.6 Hot LIPs and cold SLIPs 160
6.7 Summary 164

7. Human origins 166
7.1 The East African Rift Valley 167
7.2 The first humans 168
7.3 The Middle Stone Age and modern humans 171
7.4 Summary 179

8. The ash giant/sulphur dwarf 181
8.1 The eruption 181
8.2 Sulphur yield of the eruption 187
8.3 Climate change 190
8.4 The human story 196
8.5 Focus on India 201
8.6 Summary 205

9. European volcanism in prehistory 208
9.1 The Campanian eruption and the human revolution in Palaeolithic Europe 208
9.2 ‘Cultural devolution’ and the Laacher See eruption 216
9.3 Eruption of Santorini and decline of the Minoan civilisation 225
9.4 Summary 238

10. The rise of Teotihuacán 240
10.1 Popocatépetl 241
10.2 The Ilopango eruption 248
10.3 Summary 251

11. Dark Ages: dark nature? 253
11.1 The Mystery Cloud of 536 CE 254
11.2 Veils and whips 260
11.3 Summary 267

12. The haze famine 269
12.1 The eruption 270
12.2 Gas emissions and aerosol veil 276
12.3 Weather and climate 279
12.4 The haze famine 283
12.5 Long reach of the eruption 289
12.6 Summary 294

13. The last great subsistence crisis in the Western world 295
13.1 Sumbawa before the disaster 296
13.2 The eruption 296
13.3 Atmospheric and climate impacts 306
13.4 Human tragedy 308
13.5 Global reach of the eruption 312
13.6 Summary 318

14. Volcanic catastrophe risk 320
14.1 Three catastrophe scenarios 321
14.2 Risk control 334
14.3 Global warming: fake volcanoes and real eruptions 346
14.4 Shaken but not stirred 351

Appendix A: Large eruptions 355
Appendix B: Further reading and data sources 364
References 369
Index 385
The largest volcanic salvo of the last century took place in a remote part of the Alaska Peninsula in 1912. The eruption of Mount Katmai expelled around 28 cubic kilometres (nearly seven cubic miles) of ash and pumice, projecting roughly two-thirds of it into the air and the remaining third as ground-hugging hurricanes of dust and rock. The only event to have come close to it in more recent times is the 1991 eruption of Mt Pinatubo in the Philippines. Had an eruption the size of Katmai’s 1912 outburst occurred in more densely populated regions of the ‘lower 48’ or, say, in Italy, Indonesia or the Caribbean, the event would be much better known outside of the volcanological coterie. In case you are wondering how to envisage 28 cubic kilometres of volcanic rock, it is sufficient to form a blanket seven centimetres thick (nearly three inches) over California, or 11 centimetres across the UK!

However, the Katmai eruption was a fairly trivial demonstration of volcanic fury viewed from either geological or human evolutionary perspectives. Around 7700 years ago, an eruption twice the size did strike the conterminous USA (in Oregon). Remarkably, the memory of the eruption, which formed the magnificent landform known as Crater Lake, lingers in the oral traditions of the Klamath native American tribe. Another eruption, more than twice as large again, struck the eastern Mediterranean only 3600 years ago. It may have had a devastating ‘slow-fuse’ impact on the Minoans, one of the great early civilisations. Stretching back 73,000 years ago, a volcanic cataclysm more than 200 times larger than Katmai’s blast left a hole up to 80 kilometres across, in northern Sumatra. Some claims suggest that the event almost exterminated our ancestors! These comparisons demonstrate why we need to examine the records of much larger historic and prehistoric eruptions, if we wish to anticipate the full spectrum of possible future volcanic activity. What is more,
the deep time perspective sheds light on the gamut of societal responses to volcanic disasters, again providing vital clues to assist preparation for future volcanic catastrophes. It also reveals the creative responses to both the resources and threats associated with volcanism, which have promoted positive developments in human society and culture.

Probing into Earth’s past environmental changes has always been a primary objective of geology but geologists today work increasingly alongside climatologists, palaeo-oceanographers, ice-core specialists, dendrochronologists, anthropologists and archaeologists to understand how climate change and natural disasters have shaped human origins, migrations, replacements and the growth of society and culture. A recurring theme is the quest to understand how abrupt changes in the environment influenced human behaviour. Why, for instance, did ancient societies abandon their territory or start to decline?

Theories to explain such issues display cycles of popularity and disdain. Catastrophism, environmental determinism and the narratives of ‘dark nature’ have long pedigrees rooted in philosophy, geography, evolutionary biology, religion and popular fiction. In the Western tradition, the Creation story and Noah’s battle with the Flood are especially significant. In the nineteenth century, however, catastrophism’s pre-eminence diminished as the geologists of the day began to view ‘the past as the key to the present’, arguing that natural processes acting over very long periods of time constructed mountain ranges, ocean basins, deserts and ice caps.

However, catastrophism has never truly gone out of fashion – a cursory look at the television schedules of natural history channels proves the point. Among the ‘documentaries’ on excruciating toxins, dirtiest jobs, weirdest sharks and deadliest asteroid impacts, shows on volcanoes surface frequently. Often, they portray worst-case scenarios, encouraged surely by the recurrent publication of academic papers reporting volcanic catastrophes, both ancient and anticipated (see table). A primary aim of this book is to examine the claims that volcanism shaped prehistoric and historic social trajectories. To do this, we need to look at how volcanoes act on a very large scale, and how often they do it. Lifespans of volcanoes are variable but can exceed a million years, far in excess of the time that the species Homo sapiens has lived on Earth. Even an individual volcano might exert an intermittent influence on human ecology, demography and migration.
Such enquiry into the record of past volcanism and its impact is not only of interest to understanding archaeology and ancient environmental change. In considering the full range of risks posed by future volcanic activity it is vital to recognise that volcanoes can unleash disasters of a scale not seen for generations. In the field of flood defence, for instance, neglecting the effects of the one-in-a-hundred-year event has led to very substantial losses. What are the chances of a ‘super-volcano’ such as Yellowstone in the USA producing another ‘super-eruption’ in the next decades, and what would its impacts be? Might global climate change actually trigger volcanic eruptions? Could artificial volcanoes be used to control climate change? As well as considering these questions, this book also delves into the deeper geological record to explore the links between volcanism and mass extinctions identified in the fossil record.

Chapter 1 sets the scene by reviewing the most pertinent concepts of volcanology. It reviews the kinds of volcanoes and eruptions that are capable of ‘shaking the world’ and how often they do it. Then, the broad structure of the book is as follows: Chapters 2 and 3 provide the necessary background for understanding how volcanoes can abruptly change the environment and impact human societies across a spectrum of spatial and temporal scales. Some hazards are obvious – a glowing pyroclastic current entering through the back door for instance – but others are more insidious and potentially far more pervasive. These include the cold summers experienced after certain large eruptions due to the associated emissions of chemically reactive gases into the atmosphere. These two chapters thus distinguish between the immediate (but lasting), local-to-regional scale impacts of an eruption, and the hemispheric- to global-scale repercussions of eruption-induced climate change. One rather common (and useful) element – sulphur – turns out to be behind some of the most extravagant and far-reaching claims for volcano catastrophism. Chapters 4 and 5 provide further preparatory reading by explaining how we can reconstruct past volcanic events, environments and human responses.

Chapters 6 through 13 supply the main case studies. They are arranged to provide a time travelling experience, embarking in the deep geological past (why did the dinosaurs perish?) and ending in the second decade of the nineteenth century, when the largest and deadliest known historic eruption (of a volcano in eastern Indonesia) apparently contributed to social unrest and outbreaks of epidemic disease in Europe. In between, I review cases of eruptions that had
major repercussions on human societies, reaching back to the first migrations of modern humans out of Africa, and the prehistory of Europe, Asia, Oceania and the Americas.

One reason for this progression through time is to aid reflection on lessons for the future. The final chapter builds from an understanding of the human ecology of natural disasters, and highlights key issues for managing volcanic catastrophe risks in the world to come. Human society might be more technologically advanced than it was a millennium ago but that does not in itself bring greater security in confronting potential environmental catastrophes. Indeed, the trivially sized Eyjafjallajökull eruption in Iceland in 2010 dramatically exposed some of the specific vulnerabilities of a globalised world.

I wrote this book because I became fascinated by the intersections of geology, climatology, ecology, archaeology and anthropology. In fact, it is this plexus of themes that makes volcanology such a great subject – just about anyone can get involved: mathematicians, physicists, architects, atmospheric scientists, civil protection managers, health professionals, risk analysts, engineers, archaeologists, oceanographers and planetary scientists, among others. This reflects the relevance of the subject to an equally wide range of academic, practical and vital issues and topics, including the origins of life, human evolution, climate change, food security, geothermal energy and worldwide aviation … It has been a challenge to synthesise such a diverse and complex field. I hope that, notwithstanding the errors and omissions I have surely made, and the inevitable revisions of hypotheses that will emerge in the light of forthcoming data and models, that at least the book will convey the excitement of volcanology, and help to stimulate further research that overruns traditional disciplinary boundaries. My overall message is that, beyond the attention-grabbing claims of volcano catastrophism, what we actually know is far more nuanced (and speculative) but much more interesting.

For the sake of the forests (and the cover price), referencing has been minimised but a thorough listing of (hyperlinked) sources, plus a selection of colour images from the book, can be found at http://www.geog.cam.ac.uk/research/projects/eruptions.
Notable eruptions and some of the more extreme claims made for their effects.

<table>
<thead>
<tr>
<th>Eruption(s) and date(s)</th>
<th>Magnitude (M_0)</th>
<th>Impact scale</th>
<th>Extreme claims</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siberian Traps, 250 million years ago</td>
<td>(11.9) 3 million km(^3) lava</td>
<td>Global</td>
<td>Mass extinction</td>
<td>6</td>
</tr>
<tr>
<td>Deccan Traps, 65.5 million years ago</td>
<td>(11.6) 1.5 million km(^3) lava</td>
<td>Global</td>
<td>Mass extinction (including dinosaurs)</td>
<td>6</td>
</tr>
<tr>
<td>East African Rift Valley, repeated eruptions over last millions of years</td>
<td>7-8</td>
<td>Regional</td>
<td>Migrations of archaic and modern humans</td>
<td>7</td>
</tr>
<tr>
<td>Toba, 73,000 years ago</td>
<td>8.8</td>
<td>Hemispheric-continental</td>
<td>Severe global climate change and near extinction of Homo sapiens</td>
<td>8</td>
</tr>
<tr>
<td>Campanian Ignimbrite, 39,300 years ago</td>
<td>7.4-7.7</td>
<td>Continental-regional</td>
<td>Acceleration of the European Palaeolithic Transition, demise of the Neanderthals</td>
<td>9</td>
</tr>
<tr>
<td>Mystery eruption, 17,000 years ago</td>
<td>?</td>
<td>Regional-local</td>
<td>Extinction of Homo floresiensis ('the Hobbit')</td>
<td>8</td>
</tr>
<tr>
<td>Laacher See, 10,970 BCE</td>
<td>6.2</td>
<td>Regional</td>
<td>Migration and cultural de-evolution of populations</td>
<td>9</td>
</tr>
<tr>
<td>Kikai, c. 5480 BCE</td>
<td>7</td>
<td>Regional</td>
<td>Abandonment of southern Kyushu and cultural replacement</td>
<td>4</td>
</tr>
<tr>
<td>Witori and Dakataua, repeated eruptions over last thousands of years</td>
<td>5.8-6.5</td>
<td>Regional</td>
<td>Migrations of Lapita people; spectrum of response from adaptation to continuity</td>
<td>5</td>
</tr>
<tr>
<td>Santorini, c. 1640 BCE</td>
<td>7.2</td>
<td>Regional</td>
<td>Decline of Minoan civilisation</td>
<td>9</td>
</tr>
<tr>
<td>Eruption(s) and date(s)</td>
<td>Magnitude (log)</td>
<td>Impact scale</td>
<td>Extreme claims</td>
<td>Chapter</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Arenal, last thousands of years</td>
<td>~4</td>
<td>Local</td>
<td>Adaptation and continuity</td>
<td>5</td>
</tr>
<tr>
<td>Popocatépetl, c. 50 CE</td>
<td>5.3</td>
<td>Local</td>
<td>Rise of Teotihuacán</td>
<td>10</td>
</tr>
<tr>
<td>Mystery eruption (Ilopango), 536 CE</td>
<td>6.9 (if Ilopango)</td>
<td>Hemispheric-regional</td>
<td>Justinian plague, fall of Teotihuacán</td>
<td>10.11</td>
</tr>
<tr>
<td>Mystery eruption, 1258 CE</td>
<td>?7/C1508</td>
<td>Hemispheric</td>
<td>Famine and pestilence in Europe, religious fervour</td>
<td>11</td>
</tr>
<tr>
<td>Laki, 1783-4</td>
<td>6.6</td>
<td>Continental</td>
<td>Famine, heat wave, severe cold, flooding, air pollution, crop damage</td>
<td>12</td>
</tr>
<tr>
<td>Tambora, 1815</td>
<td>6.9</td>
<td>Hemispheric</td>
<td>Famine, poor harvests, social unrest in Europe, rise of extremism and introduction of social reforms in Europe</td>
<td>13</td>
</tr>
<tr>
<td>Yellowstone, 2100</td>
<td>7.8</td>
<td>Global</td>
<td>Transfer of human civilisation to a safer place in the Solar System</td>
<td>14</td>
</tr>
</tbody>
</table>

1. Introduced in Chapter 1.
Acknowledgements

I originally planned to finish writing this book in 1999! I am very grateful, therefore, to Cambridge University Press and the editorial team – especially Laura Clark, Susan Francis, Chris Hudson and Matt Lloyd – for maintaining enthusiasm for such a prolonged project. The advantage of the slow pace was that the book’s trajectory came to influence my research. I doubt otherwise that I would have ended up working with Quaternary scientists in Ethiopia and Eritrea, palaeopathologists excavating graves in Iceland, archaeologists in Yemen and India, or with atmospheric scientists in Italy and Antarctica.

Most of the text was reviewed in sections by friends and colleagues, who offered much sound advice that helped to improve the narrative. For this I thank Anna Barford, Peter Baxter, Amy Donovan, Hans Graf, Susanne Hakenbeck, Karen Holmberg, Phil Kyle, Christine Lane, Stephen Oppenheimer, Patricia Plunkett, Felix Riede, Alan Robock, Payson Sheets, Chris Stringer, Orvaldur Þorðarson, Robin Torrence and Paul Wignall. Several people kindly provided illustrations or data including Mike Baillie, Stuart Bedford, Keith Griffa, Alain Burgisser, Richard Ernst, Marco Fulle (that’s his spectacular photograph on the front cover), Emma Gatti, Evgenia Ilyinskaya, Kateřina Krylová, Steffen Kutterolf, Christine Lane, Patricia Plunkett, Felix Riede, Mike Salmon, Andrey Sintsyn, Jørgen Peder Steffensen, Robin Torrence, Claire Witham and Sabine Wulf. David Watson skilfully prepared maps and diagrams. I thank, too, the following for additional comments and discussions: Frank Ackerman, Nick Barton, Clive Gamble, Emmanuel Garnier, Michael Herzog, Peter Jackson, Sveinbjörn Rafnsson, Janice Stargardt, Jørgen Peder Steffensen, Chris Stringer and Rachel Wood. I also thank the four (anonymous) reviewers of the original book proposal for their valuable critiques (even if they
can’t recall their contribution by now!). Chapters 8 and 13 are thoroughly overhauled versions of papers published in *Quaternary Science Reviews* and *Progress in Physical Geography*, respectively.

I owe a particular debt to the ‘hall-of-fame’ volcanologists, archaeologists, historians, Quaternary scientists and climatologists who have investigated the larger eruptions in history and prehistory. In particular, the works of Steve Carey, Craig Chesner, Peter Francis, Hans Graf, John Grattan, Peter Kokelaar, Patricia Plunkett, John Post, Mike Rampino, Alan Robock, Bill Rose, Steve Self, Payson Sheets, Haruldur Sigurdsson, Dick Stothers, Porvaldur Pórdarson, Robin Torrence, Colin Wilson and Greg Zielinski have been a particular source of inspiration. I was also stimulated by a series of seminars staged in the mid-1990s by the King’s College Research Centre in Cambridge on the topic of human evolution and diversity. I thank, too, John Lowe and Rupert Housley for inviting me to attend a 2010 meeting of their ‘RESET’ project, which is using volcanic ash layers found in sediment sequences and archaeological sites to understand the responses of ancient human societies to sudden environmental changes (http://c14.arch.ox.ac.uk/reset).

I spent 2010 at ‘le Studium’ Institute for Advance Studies in Orléans (http://lestudium.cnrs-orleans.fr/). It has been a pleasure living and working in France and my apartment just outside the old city has been a perfect bolthole to conclude work on the book. I am extremely grateful to le Studium and the University of Orléans for support and especially to Paul Vigny and Bruno Scaillet for enthusiasm and encouragement. I thank, too, the Leverhulme Trust, which supported some of the research presented here.

All projects of this endurance surely benefit from the support of side-kicks and soul mates. I particularly thank Peter Baxter, John and Sue Binns, Pierre Delmelle, Phil Kyle, Agnès Berthin and Bruno Scaillet in this regard, and above all, Anna Barford who has cheered me through the final mile of the writing marathon!

I hope you enjoy the book. I welcome feedback. Lastly, thank you, Iceland, for giving volcanology its 15 minutes (two weeks?) of fame!