EXTREME ULTRAVIOLET ASTRONOMY

The study of the universe in Extreme Ultraviolet (EUV) wavelengths is a relatively new branch of astronomy. Lying between the X-ray and UV bands, Extreme Ultraviolet has proved to be a valuable wavelength for the study of specific groups of astronomical objects, including white dwarf stars and stellar coronae, as well as the interstellar medium.

This text describes the development of astronomy in the EUV wavelength range, from the first rocket-based experiments in the late 1960s through to the latest satellite missions. Discussions of the results from the most important space projects are followed by an analysis of the contributions made by EUV astronomy to the study of specific groups of astronomical objects. Within this framework, the book provides detailed material on the tools of EUV astronomy, dealing with the instrumentation, observational techniques and modelling tools for the interpretation of data. Prospects for future EUV missions are discussed and a catalogue of known EUV sources is included.

This timely text will be of great value to graduate students and researchers. It is the first to give a complete overview of EUV astronomy, and comes at the end of a major phase of discovery in the field.

MARTIN BARSTOW is a Reader in Astrophysics and Space Science at the University of Leicester. His research focuses on the study of hot white dwarfs and the interstellar medium, and he has a strong background in the analysis of astronomical X-ray, EUV, UV and optical data. He served as Detector Scientist for the ROSAT Wide Field Camera, for which he received a NASA Group Achievement Award. He has been involved in the development and operation of EUV and X-ray instruments, including a novel high spectral resolution EUV spectrometer for flight on a NASA sounding rocket.

JAY HOLBERG is a Senior Research Scientist at the Lunar and Planetary Laboratory of the University of Arizona. He has worked extensively in UV and EUV astrophysics in the areas of white dwarfs, the interstellar medium, planetary atmospheres and planetary ring systems. He has conducted pioneering observations in the EUV and far-UV using a variety of spacecraft, including the Hubble Space Telescope, the Extreme Ultraviolet Explorer, and Voyagers 1 and 2 for which he received a NASA Group Achievement Award.
Cambridge Astrophysics Series

Series editors
Andrew King, Douglas Lin, Stephen Maran, Jim Pringle and Martin Ward

Titles available in this series
7. Spectroscopy of Astrophysical Plasmas
 by A. Dalgarno and D. Layzer
10. Quasar Astronomy
 by D. W. Weedman
17. Molecular Collisions in the Interstellar Medium
 by D. Flower
18. Plasma Loops in the Solar Corona
 by R. J. Brivio, L. E. Cram, C. J. Durrant and R. E. Loughhead
19. Beams and Jets in Astrophysics
 edited by P. A. Hughes
20. The Observation and Analysis of Stellar Photospheres
 by David F. Gray
 by J. Frank, A. R. King and D. J. Raine
22. Gamma-ray Astronomy 2nd Edition
 by P. V. Ramana Murthy and A. W. Wolfendale
23. The Solar Transition Region
 by J. T. Mariska
24. Solar and Stellar Activity Cycles
 by Peter R. Wilson
25. 3K: The Cosmic Microwave Background Radiation
 by R. B. Partridge
26. X-ray Binaries
 by Walter H. G. Lewin, Jan van Paradijs and Edward P. J. van den Heuvel
27. RR Lyrae Stars
 by Horace A. Smith
28. Cataclysmic Variable Stars
 by Brian Warner
29. The Magellanic Clouds
 by Bengt E. Wetterlund
30. Globular Cluster Systems
 by Keith M. Ashman and Stephen E. Zepf
31. Pulsar Astronomy 2nd Edition
 by Andrew G. Lyne and Francis Graham-Smith
32. Accretion Processes in Star Formation
 by Lee W. Hartmann
33. The Origin and Evolution of Planetary Nebulae
 by S. K. Voiok
34. Solar and Stellar Magnetic Activity
 by Carolus J. Schrijver and Cornelis Zwaan
35. The Galaxies of the Local Group
 by Sidney van den Bergh
36. Stellar Rotation
 by Jean-Louis Tassoul
EXTREME ULTRAVIOLET ASTRONOMY

MARTIN A. BARSTOW
University of Leicester, UK

JAY B. HOLBERG
University of Arizona, Tucson, USA
The authors dedicate this book to Dr C. Stewart Bowyer who, through a unique personal combination of foresight, tenacity and self-belief, has done more than anyone else to realise the field of Extreme Ultraviolet Astronomy.

We would also like to dedicate this work to our families, who have had to endure our absences for all the travel associated with our research together with late nights and lost weekends preparing scientific papers, proposals and reports.
Contents

Preface xiii
List of abbreviations xv

1 Introduction to the Extreme Ultraviolet: first source discoveries 1
1.1 Astrophysical significance of the EUV 1
1.2 The ‘unobservable ultraviolet’ 3
1.3 Early detectors for the EUV 5
1.4 Early experiments with sounding rockets 8
1.5 EUV astronomy on the Apollo–Soyuz mission 9
1.6 After Apollo–Soyuz 11
1.7 Sources of EUV sky background 14

2 The first space observatories 17
2.1 Introduction 17
2.2 EUV emission processes 17
2.3 Grazing incidence mirror technology 21
2.4 Applications of grazing incidence technology in space 23
2.5 Detector technology for space missions 27
2.6 Thin film filters 34
2.7 Selected scientific results from Einstein and EXOSAT 37
2.8 Far-UV spectroscopy with IUE 50
2.9 EUV and far-UV spectroscopy with Voyager 53

3 Roentgen Satellit: the first EUV sky survey 57
3.1 Introduction 57
3.2 The ROSAT mission 58
3.3 The ROSAT Wide Field Camera 63
3.4 Highlights from the WFC EUV sky survey 68
3.5 The WFC EUV catalogues and the source population 73
3.6 Properties of the white dwarf population 77
3.7 Hidden white dwarfs in binary systems 87
3.8 EUV emission from late-type stars 91
3.9 The interstellar medium 109
Contents

4 The Extreme Ultraviolet Explorer and ALEXIS sky surveys 115
4.1 The Extreme Ultraviolet Explorer 115
4.2 The EUVE all-sky survey 123
4.3 Key EUVE survey results 128
4.4 The ALEXIS mission 145

5 Spectroscopic instrumentation and analysis techniques 155
5.1 The limitations of photometric techniques 155
5.2 The Extreme Ultraviolet Explorer spectrometer 155
5.3 Spectral analysis techniques 158
5.4 Theoretical spectral models 160
5.5 EUV spectroscopy with other instruments 170

6 Spectroscopy of stellar sources 173
6.1 Emission from B stars 173
6.2 \(\epsilon \) Canis Majoris 174
6.3 Observations of \(\beta \) CMa 185
6.4 Coronal sources – the stellar zoo 187
6.5 Main sequence dwarfs (F–K) 191
6.6 Active systems 207
6.7 Contact and short period binaries 220
6.8 The effect of stellar activity on EUV spectra 221
6.9 Giants and the Hertzsprung gap 226
6.10 Physical models 227

7 Structure and ionisation of the local interstellar medium 233
7.1 A view of local interstellar space 233
7.2 Spectral observations of the diffuse background 233
7.3 Interstellar He II and autoionisation of He in the ISM 236
7.4 Interstellar absorption by hydrogen and helium 238
7.5 Interstellar absorption from lines of heavy elements 240
7.6 Measuring interstellar opacity with white dwarf spectra 241

8 Spectroscopy of white dwarfs 251
8.1 The importance of EUV spectra of white dwarfs 251
8.2 Measuring effective temperature from EUV continua 252
8.3 Photospheric helium in hot white dwarfs 256
8.4 Heavy elements in white dwarf photospheres 266
8.5 Hydrogen-deficient white dwarfs 291
8.6 White dwarfs in binary systems with B star companions 296

9 Cataclysmic variables and related objects 301
9.1 Emission mechanisms in CVs 301
9.2 Spectral modelling 303
9.3 EUVE spectroscopy of magnetic CVs 306
9.4 Non-magnetic CVs 311
Contents

9.5 Intermediate polars 312
9.6 Summary 315

10 Extragalactic photometry and spectroscopy 317
10.1 Active galaxies 317
10.2 Extragalactic source variability 321

11 EUV astronomy in the 21st century 325
11.1 Looking back 325
11.2 Limitations 326
11.3 New EUV science 326
11.4 Advanced instrumentation for EUV astronomy 331
11.5 Concluding remarks 335

Appendix. A merged catalogue of Extreme Ultraviolet sources 337
References 373
Index 387
Preface

This book is the first comprehensive description of the development of the discipline of astronomy in the Extreme Ultraviolet (EUV) wavelength range (≈100–1000 Å), from its beginnings in the late 1960s through to the results of the latest satellite missions flown during the 1990s. It is particularly timely to publish this work now as the Extreme Ultraviolet Explorer, the last operational cosmic EUV observatory, was shut down in 2001 and re-entered the Earth's atmosphere in early 2002. Although new EUV telescopes are being designed, it will be several years before a new orbital observatory can come to fruition. Hence, for a while, progress beyond that reported in this book will be slow.

We intended this book to be for astrophysicists and space scientists wanting a general introduction to both the observational techniques and the scientific results from EUV astronomy. Consequently, our goal has been to collect together in a single volume material on the early history, the instrumentation and the detailed study of particular groups of astronomical objects. EUV observations of the Sun are not within the scope of this current work, since the Sun can be observed in far more detail than most sources of EUV emission, providing material for a book on its own. We have found it useful to deal with the subject in its historical context. Therefore, we do not have specific chapters on instrumentation but integrate such material into the development of the scientific results on a mission-by-mission basis. The overall framework can be divided into three main sections:

1. Early history of the subject leading up to the first orbital missions, which had an EUV capability but were not dedicated to EUV astronomy (chapters 1 and 2).

 The first dedicated EUV astronomy orbital telescopes and the sky surveys carried out by them to produce reference catalogues of EUV sources (chapters 3 and 4). We include an integrated catalogue of all EUV sources known at the time of publication in appendix A.

2. EUV spectroscopy techniques and study of specific groups of astronomical objects: stars, the interstellar medium, white dwarfs, cataclysmic variables and extragalactic sources (chapters 5 to 10).

Since we are very active in the field of EUV astronomy, it is inevitable that much of the material included here has been drawn from our own work. However, we have made a concerted attempt to represent all of the many astronomers who have made significant contributions. It has not been possible to include all the EUV astronomy results published, as this would constitute several volumes. Therefore, we have had to carefully select representative material, which we hope gives the overall flavour of work in each subtopic. We have tried to make the
Preface

bibliography extensive to compensate for these necessary omissions. As will be seen from
the book, we have obtained a large number of figures and tables from the many original
authors of scientific papers. It would be invidious to single out particular individuals from
this list: rather, we would like to collectively thank all who have contributed to the content
of this book. Specific acknowledgement of individual figures or tables can be found in the
captions. We have been extremely pleased by the positive support received from everyone
that we have asked for help. It is clear to us that this reflects the general friendly nature of
the EUV astronomy community, with shared interests and common goals. It has been a great
pleasure to work with you all over many years. Thanks to everyone for that.

There are a few individuals that deserve specific thanks. First, to Bob Stern who was
originally a co-author but was forced to drop out owing to other commitments. Nevertheless,
he played an important role in developing the proposal for the book. We hope you like the
result, Bob. Also a number of people have done some sterling work in helping to generate
figures or tables that we could not obtain directly from the original authors. These are: Reni
Christmas, Graham Wynn, Elizabeth Seward, Nigel Bannister, Jim Collins and David Sing.

Finally, we have made an attempt at prescience by looking at the possible future of EUV
astronomy in the final chapter (11) of our EUV Astronomy book. We hope it is a bright one
and that this book can be part of its foundation.

Martin Barstow and Jay Holberg
Abbreviations

ACS attitude control system
AGB asymptotic giant branch
AGN active galactic nuclei
ALEXIS Array of Low Energy X-ray Imaging Sensors
ALI Accelerated Lambda Iteration
ASCA a Japanese X-ray astronomy satellite
ASTP Apollo–Soyuz Test Project
BSC Bright Source Catalogue
CEM channel electron multiplier
CHIPS Cosmic Hot Interstellar Plasma Spectrometer
CMA channel multiplier array
CSM Command and Service Module
CSPN central stars of planetary nebulae
CV cataclysmic variable
DEC astronomical position coordinate: declination
DEM differential emission measure
DM dispersion measure
DS deep survey
DSS deep survey/spectrometer
ESA European Space Agency
EUV Extreme Ultraviolet
EUVE Extreme Ultraviolet Explorer
EUVI Extreme Ultraviolet Imager
EUVS Extreme Ultraviolet Spectrograph
EUVT Extreme Ultraviolet Telescope
EXOSAT European X-ray Astronomy Satellite
FIP first ionisation potential
FOS Faint Object Spectrometer
FOV field of view
FUSE Far Ultraviolet Spectroscopic Explorer
fwhm full width half maximum
GHRS Goddard High Resolution Spectrometer
HEAO High Energy Astronomical Observatory
HEW half energy width
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>Hertzsprung–Russell</td>
</tr>
<tr>
<td>HRI</td>
<td>High Resolution Imager</td>
</tr>
<tr>
<td>HST</td>
<td>Hubble Space Telescope</td>
</tr>
<tr>
<td>HUT</td>
<td>Hopkins Ultraviolet Telescope</td>
</tr>
<tr>
<td>IAU</td>
<td>International Astronomical Union</td>
</tr>
<tr>
<td>IEH</td>
<td>International Extreme-ultraviolet Hitchhiker</td>
</tr>
<tr>
<td>IPC</td>
<td>imaging proportional counter</td>
</tr>
<tr>
<td>IRAS</td>
<td>Infrared Astronomical Satellite</td>
</tr>
<tr>
<td>ISM</td>
<td>interstellar medium</td>
</tr>
<tr>
<td>IUE</td>
<td>International Ultraviolet Explorer</td>
</tr>
<tr>
<td>J-PEX</td>
<td>Joint Plasmadynamic Experiment</td>
</tr>
<tr>
<td>LANL</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>LE</td>
<td>low energy</td>
</tr>
<tr>
<td>LEIT</td>
<td>low energy imaging telescope</td>
</tr>
<tr>
<td>LETG</td>
<td>low energy transmission grating</td>
</tr>
<tr>
<td>LIC</td>
<td>local interstellar cloud</td>
</tr>
<tr>
<td>LISM</td>
<td>local interstellar medium</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>LTE</td>
<td>local thermodynamic equilibrium</td>
</tr>
<tr>
<td>LW</td>
<td>long wavelength</td>
</tr>
<tr>
<td>LWR</td>
<td>Long Wavelength Redundant camera on IUE</td>
</tr>
<tr>
<td>MAD</td>
<td>metal abundance deficiency</td>
</tr>
<tr>
<td>MAMA</td>
<td>multi-anode microchannel array</td>
</tr>
<tr>
<td>MCP</td>
<td>microchannel plate</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MJD</td>
<td>Modified Julian Date</td>
</tr>
<tr>
<td>MPE</td>
<td>Max-Planck Institut für Extraterrestriche Physik</td>
</tr>
<tr>
<td>MSSL</td>
<td>Mullard Space Science Laboratory</td>
</tr>
<tr>
<td>MW</td>
<td>medium wavelength</td>
</tr>
<tr>
<td>NEWSIPS</td>
<td>The new version of IUESIPS, the original processing of IUE data</td>
</tr>
<tr>
<td>NRL</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>ODF</td>
<td>Opacity Distribution Function</td>
</tr>
<tr>
<td>OGS</td>
<td>objective grating spectrometer</td>
</tr>
<tr>
<td>ORFEUS</td>
<td>Orbiting Retrievable Far and Extreme Ultraviolet Spectrometers</td>
</tr>
<tr>
<td>OSO</td>
<td>Orbital Solar Observatory</td>
</tr>
<tr>
<td>PG</td>
<td>Palomar Green</td>
</tr>
<tr>
<td>PMS</td>
<td>pre-main sequence</td>
</tr>
<tr>
<td>PSC</td>
<td>position sensitive proportional counter</td>
</tr>
<tr>
<td>RA</td>
<td>astronomical position coordinate: right ascension</td>
</tr>
<tr>
<td>RAP</td>
<td>Right Angle Program</td>
</tr>
<tr>
<td>RE</td>
<td>ROSAT EUVE</td>
</tr>
<tr>
<td>ROSAT</td>
<td>Roentgen Satellit</td>
</tr>
<tr>
<td>RXTE</td>
<td>Rossi X-ray Timing Explorer</td>
</tr>
<tr>
<td>SAA</td>
<td>South Atlantic Anomaly</td>
</tr>
<tr>
<td>SIC</td>
<td>surrounding interstellar cloud</td>
</tr>
<tr>
<td>SIMBAD</td>
<td>a database operated by the Centre de Donnes astronomiques de Strasbourg</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Service Module</td>
</tr>
<tr>
<td>SPIE</td>
<td>Society for Photoinstrumentation Engineers</td>
</tr>
<tr>
<td>SSS</td>
<td>Solid State Spectrometer</td>
</tr>
<tr>
<td>STIS</td>
<td>Space Telescope Imaging Spectrograph</td>
</tr>
<tr>
<td>SW</td>
<td>short wavelength</td>
</tr>
<tr>
<td>SWP</td>
<td>Short Wavelength Prime camera on IUE</td>
</tr>
<tr>
<td>TGS</td>
<td>transmission grating spectrometer</td>
</tr>
<tr>
<td>UNEX</td>
<td>University-Class Explorer</td>
</tr>
<tr>
<td>UVS</td>
<td>ultraviolet spectrometer</td>
</tr>
<tr>
<td>UVSTAR</td>
<td>Ultra Violet Spectrograph Telescope for Astronomical Research</td>
</tr>
<tr>
<td>VHF</td>
<td>very high frequency</td>
</tr>
<tr>
<td>WFC</td>
<td>Wide Field Camera</td>
</tr>
<tr>
<td>WIRR</td>
<td>Wind-accreditation Induced Rapid Rotators</td>
</tr>
<tr>
<td>WS anode</td>
<td>wedge-and-strip anode</td>
</tr>
<tr>
<td>WSMR</td>
<td>White Sands Missile Range</td>
</tr>
<tr>
<td>XMA</td>
<td>X-ray mirror assembly</td>
</tr>
<tr>
<td>XRT</td>
<td>X-ray telescope</td>
</tr>
</tbody>
</table>