Gravitational N-Body Simulations

This book discusses in detail all the relevant numerical methods for the classical N-body problem. It demonstrates how to develop clear and elegant algorithms for models of gravitational systems and explains the fundamental mathematical tools needed to describe the dynamics of a large number of mutually attractive particles. Particular attention is given to the techniques needed to model astrophysical phenomena such as close encounters and the dynamics of black-hole binaries. The author reviews relevant work in the field and covers applications to the problems of planetary formation and star-cluster dynamics, both of Pleiades-type and globular clusters.

Self-contained and pedagogical, this book is suitable for graduate students and researchers in theoretical physics, astronomy and cosmology.

SVERRE AARSETH received his B.Sc. from the University of Oslo in 1959 and his Ph.D. from the University of Cambridge in 1963. After a few years as research assistant to Professor F. Hoyle, he joined the newly created Institute of Theoretical Astronomy in 1967 (which then became the Institute of Astronomy in 1972). His entire career has been spent at this Institute as a post-doctoral research fellow, giving him complete freedom to devote himself exclusively to all aspects of the modern N-body problem. The stimulating Cambridge environment has been ideal for establishing collaborations with visiting astronomers. Dr Aarseth has developed a unique set of codes that include the latest techniques, and are now publicly available. These codes are suitable for laptops and workstations as well as for the most powerful special-purpose computers.
CAMBRIDGE MONOGRAPHS ON
MATHEMATICAL PHYSICS

General editors: P. V. Landshoff, D. R. Nelson, S. Weinberg

S. J. Aarseth Gravitational N-Body Simulations
J. Ambjørn, B. Durhuus and T. Jonsson Quantum Geometry: A Statistical Field Theory Approach
A. M. Anile Relativistic Fluids and Magnetofluids
J. A. de Azcárraga and J. M. Izquierdo Lie Groups, Lie Algebras, Cohomology and Some Applications on Physics
O. Babelon, D. Bernard and M. Talon Introduction to Classical Integrable Systems
V. Belinky and E. Verdaguer Gravitational Solitons
J. Bernstein Kinetic Theory in the Early Universe
G. F. Bertsch and R. A. Broglia Oscillations in Finite Quantum Systems
N. D. Birrell and P. C. W. Davies Quantum Fields in Curved Space
M. Burgess Classical Covariant Fields
S. Carlip Quantum Gravity in 2+1 Dimensions
J. Collins Renormalization
M. Creutz Quarks, Gluons and Lattices
P. D. D'Eath Supersymmetric Quantum Cosmology
F. de Felice and C. J. S. Clarke Relativity on Curved Manifolds
P. G. O. Freund Introduction to Supersymmetry
J. Fuchs Affine Lie Algebras and Quantum Groups
J. Fuchs and C. Schweigert Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists
Y. Fujii and K. Maeda The Scalar–Tensor Theory of Gravitation
A. S. Galperin, E. A. Ivanov, V. I. Orevetsky and E. S. Sokatchev Harmonic Superspace
R. Gambini and J. Pullin Loops, Knots, Gauge Theories and Quantum Gravity
M. Göckeler and T. Schücker Differential Geometry, Gauge Theories and Gravity
C. Gómez, M. Ruiz Altaba and G. Sierra Quantum Groups in Two-dimensional Physics
M. B. Green, J. H. Schwarz and E. Witten Superstring Theory, volume 1: Introduction
M. B. Green, J. H. Schwarz and E. Witten Superstring Theory, volume 2: Loop Amplitudes, Anomalies and Phenomenology
V. N. Gribov The Theory of Complex Angular Momenta
S. W. Hawking and G. F. R. Ellis The Large-Scale Structure of Space-Time
F. Iachello and A. Arunan The Interacting Boson Model
F. Iachello and P. van Isacker The Interacting Boson–Fermion Model
C. Itzykson and J.-M. Drouffe Statistical Field Theory, volume 1: From Brownian Motion to Renormalization and Lattice Gauge Theory
C. Itzykson and J.-M. Drouffe Statistical Field Theory, volume 2: Strong Coupling, Monte Carlo Methods, Conformal Field Theory, and Random Systems
C. Johnson D-Branes
J. I. Kapusta Finite-Temperature Field Theory
V. E. Korepin, A. G. Izergin and N. M. Bogoliubov The Quantum Inverse Scattering Method and Correlation Functions
M. Le Bellac Thermal Field Theory
Y. Makeenko Methods of Contemporary Gauge Theory
N. H. March Liquid Metals: Concepts and Theory
I. M. Moutouy and G. Minster Quantum Fields on a Lattice
A. Ozorio de Almeida Hamiltonian Systems: Chaos and Quantization
R. Penrose and W. Rindler Spinors and Space-time, volume 1: Two-Spinor Calculus and Relativistic Fields
R. Penrose and W. Rindler Spinors and Space-time, volume 2: Spinor and Twistor Methods in Space-Time Geometry
P. Pokorski Gauge Field Theories, 2nd edition
J. Polchinski String Theory, volume 1: An Introduction to the Bosonic String
J. Polchinski String Theory, volume 2: Superstring Theory and Beyond
V. N. Popov Functional Integrals and Collective Excitations
R. G. Roberts The Structure of the Proton
J. M. Stewart Advanced General Relativity
A. Vilenkin and E. P. S. Shellard Cosmic Strings and Other Topological Defects
R. S. Ward and R. O. Wells Jr Twistor Geometry and Field Theories
J. R. Wilson and G. J. Mathews Relativistic Numerical Hydrodynamics

†Issued as a paperback
Gravitational N-Body Simulations

SVERRE J. AARSETH
Institute of Astronomy
University of Cambridge
To the world’s wild and magical places
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>1</td>
<td>The N-body problem</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Historical developments</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Basic concepts</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>The first steps</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Predictor–corrector methods</td>
<td>18</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Force polynomials</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Individual time-steps</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Alternative formulations</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Hermite scheme</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Block time-steps</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Time-symmetric method</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Neighbour treatments</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Ahmad–Cohen method</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>Cosmological adaptation</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Multipole expansion</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>Grid perturbations</td>
<td>43</td>
</tr>
<tr>
<td>3.6</td>
<td>Particle in box</td>
<td>46</td>
</tr>
<tr>
<td>3.7</td>
<td>Ring scheme</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>Two-body regularization</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Principles of regularization</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Levi-Civita transformation</td>
<td>54</td>
</tr>
</tbody>
</table>
4.4 Kustaanheimo–Stiefel method 56
4.5 Burdet–Heggie alternative 60
4.6 Hermite formulation 61
4.7 Stumpff functions 63

5 Multiple regularization 66
5.1 Introduction 66
5.2 Aarseth–Zare method 67
5.3 External perturbations 73
5.4 Wheel-spoke generalization 75
5.5 Heggie’s global formulation 78
5.6 Mikkola’s derivation 80
5.7 Chain treatment 82
5.8 Slow-down procedure 86
5.9 Time-transformed leapfrog scheme 90
5.10 Algorithmic regularization 92

6 Tree codes 94
6.1 Introduction 94
6.2 Basic formulation 94
6.3 Collisional treatment 96
6.4 Flattened systems 103

7 Program organization 105
7.1 Introduction 105
7.2 N-body codes 105
7.3 Flowcharts 107
7.4 Scaling and units 110
7.5 Input parameters and options 112
7.6 Basic variables 114
7.7 Data structure 117

8 Initial setup 120
8.1 Introduction 120
8.2 Initial conditions for clusters 120
8.3 Primordial binaries 124
8.4 Open clusters and clouds 127
8.5 Eccentric planar orbits 131
8.6 Motion in 3D 133
8.7 Standard polynomials 136
8.8 Regularized polynomials 138
Contents

9 Decision-making
- 9.1 Introduction 141
- 9.2 Scheduling 142
- 9.3 Close two-body encounters 144
- 9.4 Multiple encounters 147
- 9.5 Hierarchical configurations 150
- 9.6 Escapers 153
- 9.7 Mass loss and tidal interactions 154
- 9.8 Physical collisions 156
- 9.9 Automatic error checks 160

10 Neighbour schemes
- 10.1 Introduction 164
- 10.2 Basic Ahmad–Cohen method 165
- 10.3 Hermite implementation 169
- 10.4 Parallel adaptations 173
- 10.5 Black hole binaries in galactic nuclei 175
- 10.6 Hybrid formulations 177

11 Two-body algorithms
- 11.1 Introduction 181
- 11.2 General KS considerations 181
- 11.3 Stumpff Hermite version 186
- 11.4 KS termination 188
- 11.5 Unperturbed two-body motion 190
- 11.6 Slow-down in KS 192
- 11.7 Hierarchical mergers 194
- 11.8 Tidal circularization 200
- 11.9 Chaotic motions 203
- 11.10 Roche-lobe mass transfer 204

12 Chain procedures
- 12.1 Introduction 207
- 12.2 Compact subsystems 207
- 12.3 Selection and initialization 211
- 12.4 Time stepping 213
- 12.5 Slow-down implementation 217
- 12.6 Change of membership 219
- 12.7 Hierarchical stability 221
- 12.8 Termination 223
- 12.9 Tidal interactions 225
- 12.10 Black hole binary treatment 229
13 Accuracy and performance 234
13.1 Introduction 234
13.2 Error analysis 234
13.3 Time-step selection 241
13.4 Test problems 242
13.5 Special-purpose hardware 246
13.6 Timing comparisons 250

14 Practical aspects 252
14.1 Introduction 252
14.2 Getting started 252
14.3 Main results 254
14.4 Event counters 255
14.5 Graphics 257
14.6 Diagnostics 258
14.7 Error diagnosis 261

15 Star clusters 264
15.1 Introduction 264
15.2 Core radius and density centre 265
15.3 Idealized models 267
15.4 Realistic models 271
15.5 Stellar evolution 279
15.6 Tidal capture and collisions 282
15.7 Hierarchical systems 285
15.8 Spin–orbit coupling 287
15.9 Globular clusters 292

16 Galaxies 297
16.1 Introduction 297
16.2 Molecular clouds 298
16.3 Tidal disruption of dwarf galaxies 300
16.4 Interacting galaxies 301
16.5 Groups and clusters 303
16.6 Cosmological models 304

17 Planetary systems 307
17.1 Introduction 307
17.2 Planetary formation 307
17.3 Planetesimal dynamics 312
17.4 Planetary rings 317
17.5 Extra-solar planets 319
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Small-(N) experiments</td>
<td>323</td>
</tr>
<tr>
<td>18.1 Introduction</td>
<td>323</td>
</tr>
<tr>
<td>18.2 Few-body simulations</td>
<td>324</td>
</tr>
<tr>
<td>18.3 Three-body scattering</td>
<td>330</td>
</tr>
<tr>
<td>18.4 Binary–binary interactions</td>
<td>334</td>
</tr>
<tr>
<td>18.5 Chaos and stability</td>
<td>340</td>
</tr>
</tbody>
</table>

Appendix A: Global regularization algorithms | 350 |
| A.1 Transformations and equations of motion | 350 |
| A.2 External perturbations | 352 |

Appendix B: Chain algorithms | 354 |
B.1 Transformations and switching	354
B.2 Evaluation of derivatives	356
B.3 Errata	358

Appendix C: Higher-order systems | 359 |
C.1 Introduction	359
C.2 Initialization	359
C.3 Termination	360
C.4 Escape of hierarchies	361

Appendix D: Practical algorithms | 363 |
D.1 Maxwellian distribution	363
D.2 Ghost particles	363
D.3 KS procedures for averaging	364
D.4 Determination of pericentre or apocentre	365
D.5 Partial unperturbed reflection	366

Appendix E: KS procedures with GRAPE | 367 |
| E.1 Single particles | 367 |
| E.2 Regularized KS pairs | 368 |

Appendix F: Alternative simulation method | 369 |
| F.1 \(N\)-body treatment | 369 |
| F.2 Stellar evolution | 370 |

Appendix G: Table of symbols | 371 |
| G.1 Introduction | 371 |

Appendix H: Hermite integration method | 374 |
| References | 377 |
| Index | 408 |
Preface

This book spans my entire life as a research worker at Cambridge. The circumstances that created this opportunity were based entirely on luck and this aspect played a vital part during subsequent developments. In the following chapters, I have tried to give details of the most relevant methods used in so-called ‘direct integration’ of the classical N-body problem, a method of attack somewhat analogous to scaling a mountain the hard way. This has been enhanced by an extensive discussion of the main algorithms implemented in the associated computer codes. A comprehensive review of related work in the field over the last 40 years is also presented. Throughout the term N-body simulations is used exclusively for methods based on direct summation, in keeping with tradition.

Although a wide range of problems is covered, the emphasis is on the dynamics of star clusters. This involves many aspects of stellar evolution. It is fortuitous that the University of Cambridge has a long tradition in this field that dates back to Eddington and Jeans. Fred Hoyle continued this school, which eventually gave rise to the application of synthetic stellar evolution. This subject was pioneered entirely at the Institute, mainly by the sequential efforts of Peter Eggleton, Christopher Tout and Jarrod Hurley, whose work has been vital for realistic star cluster simulations.

I would like to acknowledge the assistance of colleagues who read and commented critically on various chapters – Raul de la Fuente Marcos, Douglas Heggie, Jarrod Hurley, Pavel Kroupa, Derek Richardson, Rainer Spurzem, Christopher Tout and Mark Wilkinson. Specific suggestions for improvements of the contents were made by Doug Lin, Rosemary Mardling and HongSheng Zhao. My thanks also go to Robert Izzard who did most of the figures.

Among my many collaborators, I am especially indebted to Avishai Dekel, Richard Gott, Douglas Heggie, Jarrod Hurley, Pavel Kroupa, Mike Lecar, Doug Lin, Jun Makino, Rosemary Mardling, Steve McMillan,
Preface

Seppo Mikkola, Rainer Spurzem, Christopher Tout and Khalil Zare. Likewise, the pioneers Michel Hénon, Sebastian von Hoerner and Roland Wielen provided impetus and advice in the early days. More recently, Piet Hut has acted as a catalyst for stimulating new developments.

Claude Froeschlé, Douglas Heggie, E.L. Stiefel, Victor Szebenely and Khalil Zare educated and influenced me in the fundamental topic of regularization. Moreover, the contributions of Seppo Mikkola to our collaborations in this subject over the past 15 years have been invaluable.

Lastly, in the scientific field, I have benefited greatly from the technical assistance given to me by Jun Makino, Steve McMillan and Rainer Spurzem. My sincere thanks are due to Jun Makino and Makoto Taiji who designed the special-purpose HARP-2 computer that occupied my office from 1994, and likewise to Jun Makino who is the driving force behind GRAPE-6, which has recently become the simulator’s dream machine.

I made an auspicious start at the newly created Institute of Theoretical Astronomy, founded in 1967 by Sir Fred Hoyle. He was also my Ph.D. supervisor and directly responsible for independently suggesting N-body simulations as a research topic. For all this I am immensely grateful.

My subsequent career would not have been possible without strong support from the Directors of the Institute of Astronomy since the name change in 1972, Donald Lynden-Bell, Sir Martin Rees, Richard Ellis and Douglas Gough. They allowed me complete freedom to pursue my singular interest in dynamics. I have also depended utterly on continuous post-doctoral funding since 1963 by the Government Research Establishments that have undergone several name changes but lately are known as PPARC.

On the personal side, I would like to express my deepest thanks to Patricia who supported my work and also endured my other obsessions of chess and mountaineering. I am very grateful to my mother and father for their help and encouragement during the difficult formative years in Norway. Most of this book was written at the family mountain retreat near beautiful Lake Reinunga, which provided tranquility and inspiration.

Because of my involvement since the beginning, I have taken the opportunity to review the whole subject of N-body simulations as defined above. In view of the increasing activity this is a daunting task, particularly when it comes to making critical comments. In such circumstances my opinion is often expressed instead of merely quoting published work. I apologize for significant omissions and take full responsibility for any misrepresentations that are bound to occur. This book has been in preparation for a very long time. I would like to thank my editor, Tamsin van Essen, and the staff at Cambridge University Press for their patience and advice. Special thanks are due to my copy editor, Robert Whitelock, for his critical appraisal.
In conclusion, our field has undergone a remarkable development, fuelled by an exponential growth of computing power as well as software advances. Although the beginnings were modest and the developments slow, it has now blossomed into a fully fledged scientific activity. For the longer term, further progress is only possible if we attract the younger generation to seek new challenges and enrich our subject. It is therefore my hope that this book will prove timely and serve a practical purpose. Finally, the dedication reflects my many sources of inspiration, whether it be the awesome beauty of the Atacama Desert or more accessible wildlife environments. May our planet’s fragile ecosystem and rich diversity be preserved for future enjoyment.

Sverre Aarseth

January 2003