The Escape from Hunger and Premature Death, 1700–2100

Nobel laureate Robert Fogel's compelling new study examines health, nutrition, and technology over the past three centuries and beyond. Throughout most of human history, chronic malnutrition has been the norm. During the past three centuries, however, a synergy between improvements in productive technology and human physiology has enabled humans to more than double their average longevity and to increase their average body size by more than 50 percent. Larger, healthier humans have contributed to the acceleration of economic growth and technological change, resulting in reduced economic inequality, declining hours of work, and a corresponding increase in leisure time. Increased longevity has also brought increased demand for health care. Professor Fogel argues that health care should be viewed as the growth industry of the twenty-first century and that systems of financing it should be reformed. His book will be essential reading for all those interested in economics, demography, history, and health care policy.

Robert William Fogel won the Nobel Prize for Economics in 1993. He is the Charles R. Walgreen Distinguished Service Professor of American Institutions at the Graduate School of Business and Director of the Center for Population Economics at the University of Chicago. His numerous publications include *Time on the Cross: The Economics of American Negro Slavery* (with Stanley L. Engerman) and *The Fourth Great Awakening and the Future of Egalitarianism*.
Recent work in social, economic, and demographic history has revealed much that was previously obscure about societal stability and change in the past. It has also suggested that crossing the conventional boundaries between these branches of history can be very rewarding.

This series exemplifies the value of interdisciplinary work of this kind and includes books on topics such as family, kinship, and neighborhood; welfare provision and social control; work and leisure; migration; urban growth; and legal structures and procedures, as well as more familiar matters. It demonstrates that, for example, anthropology and economics have become as close intellectual neighbors to history as have political philosophy or biography.

For a full list of titles in the series, please see the end of book.
The Escape from Hunger and Premature Death, 1700–2100

EUROPE, AMERICA, AND THE THIRD WORLD

Robert William Fogel
The University of Chicago and
National Bureau of Economic Research
To

Sir Tony Wrigley

and to the memory of D. Gale Johnson and Peter Laslett,

whose works have greatly influenced my approach to

many of the issues discussed in this volume.
This three-dimensional diagram, called a “Waaler surface,” illustrates how height and weight are related to the risk of both poor health and mortality. Its nature and uses are explained in nontechnical language in Chapter 2. Waaler surfaces were first proposed by Hans Waaler (National Institute of Public Health, Oslo) in 1984 and realized by John Kim (Center for Population Economics, University of Chicago) in various articles written or published in the late 1980s and early 1990s. Constructed by Grigoriy Abramov (Center for Population Economics, University of Chicago).
Contents

List of Figures
List of Tables
Preface
Acknowledgments

1 The Persistence of Misery in Europe and America before 1900 1
2 Why the Twentieth Century Was So Remarkable 20
3 Tragedies and Miracles in the Third World 43
4 Prospects for the Twenty-First Century 66
5 Problems of Equity in Health Care 96
 Postscript: How Long Can We Live? 108

Appendix 113
Notes 127

© Cambridge University Press www.cambridge.org
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary of Technical Terms</td>
</tr>
<tr>
<td>Biographical Notes</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>Index</td>
</tr>
</tbody>
</table>
Figures

Frontispiece

1.1 Secular Trends in Mortality Rates in England and France

1.2 Trend in Mean Final Height of Native-Born White American Males and Trend in Their Life Expectancy at Age 10

2.1 The Growth of World Population and Some Major Events in the History of Technology

2.2 Relative Mortality Risk among Union Army Veterans and among Modern Norwegian Males

2.3 Comparison of Relative Mortality Risk by BMI among Men 50 Years of Age, Union Army Veterans around 1900 and Modern Norwegians

2.4 Iso-Mortality Curves of Relative Risk for Height and Weight among Norwegian Males Aged 50–64, with a Plot of the Estimated French Height and Weight at Four Dates
2.5 Relationship between Height and Relative Risk of Ill Health in NHIS Veterans Aged 40–59
2.6 Mean BMI by Age Group and Year, 1864–1991
2.7 Health Improvement Predicted by NHIS 1985–88 Health Surface
3.1 Secular Trends in the Average Heights of Male Adolescents in Great Britain, 1748–1993, Relative to Current Dutch Growth Curves
3.2 Waaler Surface of Relative Mortality Risk for Height and Weight among Norwegian Males Aged 50–64 with a Plot of the Estimated French and English Heights and Weights since 1705 at Ages 25–39
3.3 Perinatal Death Rate by Birth Weight in Ghana, India, and the United States
3.4 Efficient Region of Body Build for Health Production on a Waaler Surface in Mortality for Norwegian Males Aged 45–89
3.5 Mean Height and Weight of 140 Adult Male Populations in 1990
3.6 Iso-Mortality Curves of Relative Risk for Height and Weight among Norwegian Males Aged 50–64, with Two Plots
4.1 Relative Burden of Health Care by Age, U.S. Data c. 1996
4.2 How Will the Curve of Relative Disease Burden Shift?
4.3 Index of Average Annual Health Care Costs by Year before Death
Tables

1.1 Life Expectancy at Birth in Seven Nations, 1725–2100 page 2
1.2 Secular Trends in the Daily Caloric Supply in France and Great Britain, 1700–1989 9
1.4 Estimated Average Final Heights (cm) of Men Who Reached Maturity between 1750 and 1975 in Six European Populations, by Quarter Centuries 13
1.5 A Comparison of the Average Daily Uses of Dietary Energy in England and Wales in 1700 and 1800 14
2.1 Comparison of the Prevalence of Chronic Conditions among Union Army Veterans in 1910, Veterans in 1983 (Reporting Whether They Ever Had Specific Chronic Conditions), and Veterans in NHIS, 1985–88 (Reporting Whether They Had Specific Chronic Conditions during the Preceding 12 Months), Aged 65 and Above, Percentages 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Secular Trends in Time Use: The Average Hourly Division of the Day of the Average Male Household Head</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Estimated Trend in the Lifetime Distribution of Discretionary Time</td>
<td>71</td>
</tr>
<tr>
<td>4.3</td>
<td>Annual Rate of Decline in Prevalence Rates of Selected Chronic Conditions among Elderly Veterans between 1910 and the Mid-1980s (in Percent) before and after Alleviating Interventions</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>The Long-Term Trend in the Structure of Consumption and the Implied Income Elasticities of Several Consumption Categories</td>
<td>89</td>
</tr>
<tr>
<td>4.5</td>
<td>Average Number of Chronic Conditions per U.S. Male in 1900 and in the 1990s</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>Average Capacity of Males to Engage in Manual Labor, by Age, c. 1900</td>
<td>92</td>
</tr>
<tr>
<td>A1</td>
<td>Relative Risks of Mortality</td>
<td>114</td>
</tr>
<tr>
<td>A2</td>
<td>Relative Mortality Risk Table for Norwegian Males Aged 50–64, by Weight (kg) and Height (m)</td>
<td>116</td>
</tr>
<tr>
<td>A3</td>
<td>Relative Mortality Risk Table for Norwegian Males Aged 50–64, by BMI and Height, Also Showing the Optimal BMI and Minimum Risk at Each Height</td>
<td>123</td>
</tr>
</tbody>
</table>
The frontispiece to this volume is a mathematical representation of the relationship between human physiology and longevity. It is emblematic of the enormous advances in the health and wealth of people over the past 300 years. It is also emblematic of the vast increase in humankind’s control over the environment and of the scientific, industrial, biomedical, and cultural revolutions that are the foundations for that control.

These advances are aptly described by the term “technophysio evolution,” which was coined to describe the unique nature of human progress since 1700. During these three centuries there has been a fifty-fold increase in the average incomes of the peoples of the United States and Japan and comparable increases in the leading countries of Western Europe. The peoples of these countries have greatly improved their health and more than doubled their longevity.

Technophysio evolution and its implications are the central themes of this volume. The term describes the complex interaction between advances in the technology of production and improvements in human physiology. The interaction is synergistic, which
means that the total effect is greater than the sum of its parts. This interaction between technological and physiological improvements has produced a form of evolution that is not only unique to humankind but unique among the 7,000 or so generations of human beings who have inhabited the earth. Although the process has been experienced only by the last ten generations of humankind, it is still ongoing. Technophysio evolution is likely not only to accelerate during the twenty-first century, but also to have a much more far-reaching impact on the poor countries of the world than it has had to date.

This book is based on the McArthur Lectures that I delivered at Cambridge University in November 1996. In those lectures I sought to summarize my own research into the synergy between improvements in productive technology and in human physiology during the past three centuries. I also sought to place that work in the context of the revolution in biodemography, including historical demography, that began shortly after World War II and has continued down to the present day.

This volume differs from the McArthur Lectures in two respects. First, I have omitted one highly technical lecture that focused on problems of measuring the contribution of various factors to improvements in nutrition, health, and longevity. Some of these issues are discussed in Chapters 2 and 3 in a manner that makes them accessible to general readers. Second, I have added two chapters.

Chapter 4 deals with the crises in financing health care and retirement brought about by increases in longevity and the rapid growth in the demand for health care services in both rich and poor nations. In this connection, I evaluate the debate over whether advances in biotechnology will save the current national health care systems, many of which are teetering on the brink of insolvency.

Chapter 5 surveys the evidence and debates bearing on the equity of health care, both within nations and internationally. Immediately after World War II, many nations sought to establish national services that would provide complete health care to everyone. More recently, public authorities have shifted their emphasis to guaranteeing “essential” health care. The distinction between
universal and essential health care is evaluated, as are debates over the optimal mix of private and government components of health services. Problems of preserving equity created by an increasing reliance on the private sector are considered.

The share of health care in national incomes has been rising in both rich and poor nations. This development has created alarm among public officials and some academic analysts. The alarm is unwarranted because the rising consumption of health care is driven by popular demand. In the pages that follow, I argue that health care is the growth industry of the twenty-first century. It will promote economic growth through its demand for high-tech products, skilled personnel, and new technologies, just as electrification spurred economic growth during the first half of the twentieth century. To achieve that potential it will, however, be necessary to reform some aspects of the system of the financing of health care that are not well suited to current needs.
I am indebted to Sir Tony Wrigley, who invited me to present the McArthur Lectures and who has influenced my research since the 1960s.

It was my good fortune to have had Simon Kuznets as my principal teacher in graduate school. He introduced me to the many exciting issues on the interrelationship between population growth and economic growth.

Much of what I have reported in this volume stems from the findings of the collaborators in the program project “Early Indicators of Later Work Levels, Disease, and Death,” including Dora L. Costa, Matthew E. Kahn, Chulhee Lee, Louis L. Nguyen, Clayne L. Pope, Irwin H. Rosenberg, Nevin S. Scrimshaw, Chen Song, Werner Troesken, Sven E. Wilson, Peter D. Blanck, Christine K. Cassel, Johanna T. Dwyer, Jacob J. Feldman, Joseph P. Ferrie, Roderick Floud, Kwang-sun Lee, Robert Mittendorf, Aviva S. Must, Ira M. Rutkow, James M. Tanner, James Trussell, and Larry T. Wimmer.

The research for this book was supported by grants from the National Institute on Aging, the National Science Foundation, the
Walgreen Foundation, the National Bureau of Economic Research, and the University of Chicago.

I am indebted to Jesse Ausubel, Bernard Harris, and Paul Waggoner, who read the penultimate draft and made many helpful suggestions.

Katherine A. Chavigny and Susan E. Jones bore the brunt of the editorial work on these lectures, which included not only numerous suggestions for improvements in style but also most of the work on the citations. Katharine J. Hamerton also assisted in the editorial process. Ruma Niyogi prepared the Glossary and the Biographical Notes. The various drafts were typed by Marilyn Coopersmith, Karen Brobst, and Pat Mackins-Morrow.