High Resolution Microbial Single Cell Analytics

Bearbeitet von
Susann Müller, Thomas Bley

ISBN 978 3 642 16886 4
Format (B x L): 15,5 x 23,5 cm
Gewicht: 583 g

Weitere Fachgebiete > Technik > Biotechnologie
Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

beck-shop.de
DIE FACHBUCHHANDLUNG

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
Advanced Microscopy of Microbial Cells

Janus A. J. Haagensen, Birgitte Regenberg and Claus Sternberg

Abstract Growing awareness of heterogeneity in cells of microbial populations has emphasized the importance of advanced microscopy for visualization and understanding of the molecular mechanisms underlying cell-to-cell variation. In this review, we highlight some of the recent advances in confocal microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy for visualization of variation between cells in phenotypic traits such as gene expression.

Keywords Advanced microscopy techniques · Single-cell gene expression · Bistability · Biofilm development and differentiation · Bacteria · Yeast

Abbreviations

AFM Atomic force microscope
AOBS Acousto-optical beam splitter
AOTF Acousto-optical tunable filter
CARS Coherent anti-Stokes Raman spectroscopy
CFP Cyan fluorescent protein
CLSM Confocal laser scanning microscope
EPS Extracellular polymeric substance
FRAP Fluorescence recovery after photobleaching

J. A. J. Haagensen
Stanford University, The Bio-X Program, Clark Center, 318 Campus Drive, Stanford, CA 94305, USA
e-mail: Haagensen@stanford.edu

B. Regenberg and C. Sternberg
Department of Systems Biology, Technical University of Denmark, Building 301, 2800 Kongens, Lyngby, Denmark
e-mail: cst@bio.dtu.dk

B. Regenberg
Department of Biology, Molecular Integrative Physiology, Universitetsparken 13, 2100 Copenhagen, Denmark
e-mail: bregenberg@bio.ku.dk
GFP  Green fluorescent protein
MP  Multi photon
NA  Numerical aperture
PALM  Photo-activated localization microscopy
PE  Polyethylene
PI  Propidium iodide
PMT  Photo multiplier
PP  Polypropylene
PVC  Polyvinyl chloride
SIM  Structured illumination microscopy
SERS  Surface enhanced Raman spectroscopy
STED  Stimulated emission depletion
TERS  Tip enhanced Raman spectroscopy
STORM  Stochastic optical reconstruction microscopy
YFP  Yellow fluorescent protein

Contents

1 Introduction .................................................................................................................. 23
2 Advanced Microscopy and Tools ............................................................................ 24
  2.1 The Standard Confocal Microscope Today ....................................................... 24
  2.2 Wide Spectrum ("white") Lasers ...................................................................... 24
  2.3 Multi-Photon/Two-Photon Microscopy ........................................................... 25
  2.4 Super Resolution Confocal Microscopy ......................................................... 26
  2.5 Other Microscopy Techniques Surpassing the Diffraction Resolution Limit ...... 27
  2.6 Atomic Force Microscopy ............................................................................... 28
  2.7 Single-Cell Fluorescent Labeling, Visualization and Physiology .................... 29
  2.8 Raman Microscopy ....................................................................................... 30
  2.9 Presentation and Analysis Software ................................................................ 32
3 Bacterial Single-Cell and Biofilm Microscopy, Bistability and Subpopulations ...... 32
  3.1 Bistability in B. subtilis .................................................................................. 33
  3.2 Bimodal Gene Expression and Biofilm Formation ......................................... 35
  3.3 Persistence and Bistability in E. coli ............................................................... 37
  3.4 Raman Microscopy of Bacterial Cells ............................................................. 38
  3.5 Pseudomonas aeruginosa Biofilm Development and Differentiating Subpopulations ................. 40
4 Yeast Single-cell and Biofilm Microscopy .............................................................. 42
  4.1 Cell-to-Cell Variation in Yeast Populations ................................ .................. 43
  4.2 Bistability in Yeasts ...................................................................................... 43
  4.3 Microscopy of Candida albicans Biofilm ....................................................... 44
  4.4 Confocal Microscopy of S. cerevisiae Biofilms on Batch Culture Slides
      and in Flow Chambers .................................................................................. 45
5 Future Perspectives ................................................................................................ 47
References ................................................................................................................... 48
1 Introduction

While culture or community-based approaches where millions of organisms are studied collectively as a single entity are adequate for general physiological studies, microscopy of single cells and subpopulations has lately been realized as an important and sometimes indispensable tool when a community of apparently homogenous cells is investigated for phenotypic diversity.

The often used assumption when monitoring gene expression in a bacterial population is to consider the population as a uniform pool. However, this will only report average values and never pick up variations between individual single cells. This assumption has been prevailing as analyzing and visualizing single cells in large populations have been difficult or impossible.

Microscopy has been an important method for analysis of microbial cells since Antonie van Leeuwenhoek described amoebae and other microorganisms in the late 1600s. The ‘compound microscope’, i.e., a microscope with more than one lens, was invented almost a century before these first reports of living microorganisms [8]. Development of the microscope has since undergone numerous improvements, where some of the most notable are the invention of the fluorescence microscope [60], the phase contrast principle [150], the electron microscope in 1931 [114], the confocal microscope in 1955 [89], and the atomic force microscope (AFM) in 1986 [15] and derivatives of these.

Today, new technologies provide the possibility to differentiate between sub-populations and to analyze single cells for altered gene expression using advanced microscopy, cell sorting and a growing number of fluorescent reporter tools. An increased awareness of cellular differentiation has emphasized the need for understanding of microbial gene expression and provides a more efficient and direct treatment of bacterial and fungal infections [128, 138]. Furthermore, a better insight into the regulation of differentiation in bacteria and yeasts can lead to a wider application in biotechnology [27].

Microbes are found everywhere from settings in the human host to soil and aquatic environments. They are constantly meeting new environmental conditions and have evolved highly sophisticated abilities to adapt to changes. Several adaptive mechanisms are used by microbial populations to turn on and off genes stochastically in a population of cells while being in the same environment. This approach can ensure that a subpopulation of cells will survive in a situation where life conditions suddenly change (bet-hedging). Bistability is an example of a molecular mechanism that has evolved to diversify the transcriptional program and phenotype of a clonal population within the same environment. Bistability can be described as an inheritable and reversible switch at the level of transcription that does not involve genetic rearrangements or mutations but is rather epigenetic in its nature [27, 35, 39].

In this chapter, we will describe the current state of the art microscopy techniques and use bistability in microbial populations and biofilm development and
differentiation in these as examples of biological properties, which to a large extent has been observed and investigated using advanced microscopy.

2 Advanced Microscopy and Tools

2.1 The Standard Confocal Microscope Today

From the time the first confocal microscopes became commercially available, a long range of improvements has been implemented and are now standard: The lasers used in most microscopes have a much improved lifetime compared to early models, and in particular the ruggedness of diode lasers significantly extend the period before replacement is necessary. In addition, this type of laser requires less for the installation environment in terms of power supply and cooling—all factors that lower the running costs. Traditional gas lasers, such as the most common Argon gas laser, has also improved and now provides longer life spans. The detectors of confocal microscopes are traditionally photo-multipliers, PMTs. Their sensitivity largely determines the overall image quality, particularly in conditions of low light intensity. Newer PMTs have improved signal-to-noise ratios, enabling detection of fainter fluorescence signals. The band-pass filters on the emission side has also been improved from the original glass filters, which were placed in the light path manually, over motorized filter wheels to the acousto-coupled beam deflector [42], commonly known as an acousto-optical tunable filter (AOTF). AOTF selectively deflects specific wavelengths out of the light path, leading only the desired emission to the detectors. This technology has been developed into multiline spectral splitters, such as the acousto-optical beam splitter (AOBS) [16], which allows for detection of multiple wavelength ranges simultaneously. An alternative to this is the technology where the light beam is spectrally split by a grate working like a prism, and selected parts of the spectrum are captured by an array of detectors.

Confocal microscopes have been and are widely used in the study of complex microbial communities (biofilms) since the first reports by the Caldwell group in 1992 [21, 85] and onto the present day [97, 103, 148].

2.2 Wide Spectrum ("white") Lasers

Traditional gas lasers can emit light of at most a few, well-defined wavelengths. For instance, the most commonly used laser in confocal microscopy, the Argon gas laser, emits a range of monochromatic wavelengths at 488, 351, 454.6, 457.9, 465.8, 476.5, 496.5, 501.7, 514.5 and 528.7 nm. However, in the standard visible light configuration, the laser is configured to mainly provide 488-nm blue excitation light. Some of the other wavelengths require alteration of the mirror system.
to be usable, and some are considerably weaker than the 488-nm line. It is also common that commercial instruments have multiple lasers with different characteristics to enable the use of more fluorophores. Despite multiple simultaneous lasers, the choices of excitation wavelengths are limited. To alleviate this, the super-continuum laser, also known as the “white” laser, has been introduced. The super-continuum laser is a compound laser consisting of a pump laser and a crystal photonic fiber optic. A conventional laser delivers a narrow band laser illumination to the end of the fiber that consists of a bundle of hollow tubes. When passing through the fiber the spectrum is broadened, resulting in a wide spectrum emission. The width of the spectrum depends on the pattern and length of the tube arrangement inside the fiber. The first verified reports of broad spectrum laser light were published already in 1970 [3, 4]. However, it was only after the invention of the hexagonal photonic fiber that the white laser we know today was made useful for practical applications [81]. The technology is currently used for confocal microscopy [18] and stimulated emission depletion (STED) [145–147] (see below). A typical wide spectrum laser used in confocal microscopy has a spectrum covering most of the visible wavelengths, 470–670 nm.

2.3 Multi-Photon/Two-Photon Microscopy

Conventional confocal imaging has its basis in the fluorescence microscope, i.e., the specimen must contain a dye that is fluorescent—an added dye in the form of a chemical, a fluorescent protein expressed by cells in the sample or auto-fluorescence. The sample is illuminated using a laser throughout the entire depth, and fluorescence is emitted from the whole cross section. The emission pinhole will remove most of the fluorescence from all planes except the focal plane. This method is most likely harmful to living cells as all cells are exposed to laser radiation for the duration of the scanning, and the aberrant fluorescence from the layers other than the focal plane do in fact contribute to noise in the image.

The two- or multi-photon (MP) principle [51] predicts that when two or more photons hits a fluorophore simultaneously (i.e., within a femtosecond timeframe) the two photons will both contribute to the excitation. In other words, a longer wavelength laser illumination can provide a localized energy pulse corresponding to that of a shorter, more energy-rich wavelength used in a conventional one-photon system. Thus, using infrared laser light, it is possible to excite molecules that require, e.g., blue light for excitation. Since the multi-photon effect only occurs where more photons are precisely in synchronicity, it is possible to exploit this property to narrow the illumination to an extremely small volume. This is used in the two-photon confocal microscope [36]. The MP-confocal microscope gives better vertical (z-)resolution, about 100 nm [96] compared to 5–700 nm for conventional, one-photon confocal microscopy. High-resolution confocal microscopy of relatively thick specimens is possible with MP excitation [95, 96]. The emission pinhole is not necessary, since only objects in a small volume in the focal plane are
excited by more than one photon at a time, the remainder of the specimen only experiences long wavelength light with less detrimental effects (both for cytotoxicity and bleaching). However, since the light flux is very high in the small volume that is excited, cell damage can occur if care is not taken to protect the exposed cells [67]. MP microscopy in life sciences was reviewed by König [83].

### 2.4 Super Resolution Confocal Microscopy

Ernst Abbe (1840–1905) determined the theoretical optical resolution as $d = \frac{\lambda}{2NA}$, where $\lambda$ is the wavelength and NA is the numerical aperture of the objective [1]. Using visible light, this means that the practical horizontal resolution (the distance to resolve two objects) is 200–250 nm. While this is sufficient for many purposes, analysis of sub-cellular structures, surface components and appendages is rarely possible. Electron microscopy and atomic force microscopy (see below) have several-fold improved resolution but have other shortcomings; e.g., electron microscopy usually requires the sample to be fixed, dried and dyed with metal dyes, whereas atomic force microscopy is restricted to analysis of the top surface of structures with little variation in height. The optical microscope is superior since it allows scrutiny of living, wet samples in three dimensions.

A number of methods now exist to circumvent the law of Abbe, either as a physical, on-line method or as a computational reconstruction from several interlaced images. Probably the most prominent high-resolution technology is STED [40, 57, 63, 79]. In STED the sample is illuminated by two tightly synchronized light pulses. The fluorophore is excited with a pulsed excitation beam, e.g., 640 nm, which causes the sample to emit light (Fig. 1). Without STED, the
emitted light will have a diffraction limit that in part is determined by Abbe’s equation. STED adds an additional light pulse at, e.g., 730–780 nm, which is doughnut shaped with a dark center. The wavelength of the STED illumination does not excite the fluorophore—rather it causes the already excited molecules to return to the ground state without emitting light. The result is that fluorescence is only emitted from the dark center, the size of which is determined by the laser power of the STED light, increasing the effective resolution to this center area.

Instrument development platforms have reached a resolution of 5.8 nm [111], while commercial instruments typically will have a lower effective resolution. The first generation STED microscopes were limited in the number of fluorescent dyes that could be employed since the laser configuration required was limited to 640 nm excitation and 730–780 nm depletion. Using lasers with tunable excitation wavelengths, the STED technology has broadened the versatility of the instrument. Using the continuous wave laser or super-continuum lasers, it is possible to utilize commonly used markers such as green fluorescent protein (GFP) with a resolution of 29–60 nm [61, 145–147].

2.5 Other Microscopy Techniques Surpassing the Diffraction Resolution Limit

Computational treatment of images after acquisition demonstrate other methods for rendering of images with sub-diffraction resolution. Three such methods have been commercialized, the stochastic optical reconstruction microscopy (STORM), photo-activated localization microscopy (PALM) and structured illumination microscopy (SIM).

STORM is based on sequential excitation of photo-switchable fluorophores in a sample followed by reconstruction of a high-resolution image from a series (sometimes hundreds or thousands) of images of the same field of view [68, 115]. The principle of STORM is that only a fraction of the fluorophores are excited at any time in the sample, which then is recorded by the microscope. A quenching light pulse extinguishes the fluorophores and excites another set of dye spots in the sample. By changing the position that is illuminated or quenched, it is possible to record a fine map of the position of the fluorescent molecules. Using computer programs, this information can be converted into an image with in principle unlimited resolution [115], but mechanical limitations give an effective resolution in the range of 20 nm. PALM is an independently developed technique using the same principle as STORM [13, 64, 104, 122]. One prominent feature of this method for resolution improvement is that that in principle standard microscopy equipment and a low cost laser are all that is required of the hardware, although advanced software is needed for the post-recording image manipulation. STORM and PALM have been used for 3D imaging [68, 76, 105, 123, 137] and multicolor imaging [10, 118, 122].
SIM uses the principle of interlaced information from structured illumination by very high-resolution patterns that are projected onto the fluorescent sample. When two patterns are overlaid, these images result in a moiré fringe with a lower resolution. Figure 2 demonstrates how two idealized high-resolution patterns result in a moiré fringe (here perceived as horizontal lines) with lower resolution (spacing) than the original patterns. In the SIM one of the patterns is comprised of the structure in the sample (the distribution of fluorescent dye) and the overlaying pattern of the illumination pattern. Using multiple images recorded with different illumination angles and mathematical processing, it is possible to reconstruct an image with resolution corresponding to the resolution of the illumination pattern.

This method gives approximately a two-fold improvement in resolution compared to the diffraction limit determined by Abbe [48]. A recent extension of this technique, saturated SIM (SSIM), has further moved the resolution limit. SSIM utilizes nonlinear patterned excitation of fluorescent samples and the image reconstruction techniques of SIM to achieve in principle unlimited resolution, while practical experimental setups have yielded a resolution of roughly 50 nm, or four times that of standard microscopy [49, 62]. Due to the requirement for overlay of several sequentially recorded images, SIM and SSIM are less well suited for imaging of living cells, but a recent report has demonstrated SIM of slowly moving cells [66].

2.6 Atomic Force Microscopy

Atomic force microscopy is a non-optical surface scanning method in which a tip (probe) at the end of a flexible cantilever is transversing a structured surface. The AFM can operate in several different modes. The two most commonly used for imaging are contact mode and tapping mode, or dynamic mode. In contact mode, the tip is dragged across the surface and irregularities on the surface cause the cantilever, which is carrying the tip, to bend up and down. A laser is recording the bend, which can be directly correlated to the topology of the surface. In tapping mode an oscillating frequency is applied to the cantilever, making the tip move up
and down towards the surface. In tapping mode the tip is subjected to a combination of attractive and repulsive forces, which influence the amplitude of the oscillation. A feedback loop corrects the distance between the cantilever and the sample by piezo-electrical actuators (moving the stage or the cantilever-mount) to bring the amplitude back to the initial state (Fig. 3). The required correction can be correlated to the distance between the tip and sample at a specific position and then converted to a height (3D) image of the surface when the tip is moved across the sample.

The AFM has atomic resolution on crystalline surfaces and nanometer resolution on other surfaces. It can be operated in liquids and gaseous environments. Applications of atomic force microscopy in biological research began in the early 1990s [50, 86, 117, 133]. As the AFM became more integrated in life science research, this new tool provided a new approach for the examination of biomolecules including proteins [55, 107, 117], DNA [56, 86, 134] and highly topographic samples, such as bacterial [5, 17, 19, 22, 112] and yeast cells [44, 77] at nanoscale resolution. Most importantly, samples could be imaged in physiological relevant media, and in the case of bacteria and mammalian cells living cells could be imaged in their native environment. While the AFM provides imaging with extreme resolution, it does only facilitate analysis of surfaces that are accessible from above; hence, it is not suitable for analysis of intercellular processes.

2.7 Single-Cell Fluorescent Labeling, Visualization and Physiology

Several microscopic methods require that cells are fluorescent. Consequently, it is important to have tools available for staining or marking investigated cells with specific fluorescent labels.

Recently, there has been a development of fluorescent stains, such as the Syto stains (Invitrogen, Carlsbad, CA), that efficiently, although unspecifically, can

Fig. 3  Atomic force microscopy. The sample is scanned by a moving tip (b), which is attached to a flexible cantilever (a). The deflection of the cantilever is recorded by using a laser (c) illuminating a spot on the back of the cantilever. The position of the spot is recorded by a photomultiplier (d), and a feedback loop moves the cantilever or the sample to return the deflection to a neutral state (as determined by the location of the laser spot)
stain cells. Combinations of stains with different excitation and emission wavelengths are available for possible use together with reporter gene constructs. Using Syto9-labeled cells in combination with propidium iodide (PI), it is possible to specifically determine living and dead cells in a population. The dye Syto9 will mark all cells green, while it is generally assumed that only cells with a damaged membrane integrity will be stained by the red PI dye, indicating dead cells. PI will reduce Syto9 in dead cells, making them only fluoresce red. Recent results suggest that propidium iodide might be of limited use as a cell viability indicator in some settings and for some strains. Therefore, it is important for each species and environment to calibrate the concentration of dye [91, 121].

As an alternative to direct staining, a common method used today is to modify the cells of interest genetically by chromosomal tagging with a gene cassette encoding a fluorescent protein or by plasmid introduction. In this way GFP (green), RFP (red), CFP (cyan) and YFP (yellow) have been successfully introduced into many different cell types. GFP-tagged cells can substitute the use of Syto9 in the live/dead assay described above.

Fluorescent tagging can be used as simple labeling to verify and visualize the location of several species in a mixed community. By selecting suitable variants of fluorescent protein genes and promoters, this kind of tagging can be used for monitoring gene expression in specific cells. This way metabolic/physiological activity has been determined in biofilms by introducing constructs encoding for GFP derivatives with a short half-life, placed under transcriptional control of a ribosomal promoter. Cells that have a high activity will show as bright green, whereas cells with low or no activity show little or no fluorescence [130].

2.8 Raman Microscopy

Raman spectroscopy is a method that can produce a fingerprint of the chemical composition of materials in a cell based on Raman scattering of the molecules in the materials. Molecules that are hit by an incoming photon can either absorb or scatter the light, or not interact at all with the light. The scattered light will primarily have the same wavelength as the incoming light, whereas a very small fraction (1 per $10^6$–$10^8$ photons) will have a different, higher or lower, wavelength due to vibrational or rotational effects in the molecule: When a photon interacts with the electron cloud and bonds in a molecule, it can excite it to a more energetic state. Most photons excite a molecule to a higher virtual energy state from a relaxed state. When the molecule returns to the relaxed state, energy of the same magnitude (and hence photons with the same wavelength) as the excitation energy is released. This is called Rayleigh scattering (Fig. 4).

Occasionally, however, the molecule may be excited to the higher virtual energy state and return to an energy state that has a higher level than the relaxed state, releasing less energy than the excitation photon. This will then result in a scattering photon with less energy, i.e., longer wavelength, called Stokes
scattering. Similarly, a condition can occur where the molecule is already in a higher virtual energy state when the incoming photon excites the molecule. If the molecule subsequently returns to the relaxed state, the scattered photon will have a higher energy than the incoming photon, resulting in a shorter wavelength. This very rare reaction is called anti-Stokes scattering. Together Stokes and anti-Stokes scattering is called Raman scattering. Raman spectroscopy utilizes a single frequency of radiation for excitation, and the spectrum of frequency shifted emission from the sample is the Raman emission spectrum. The Rayleigh scattering is filtered to leave only the much weaker Raman scattering [126]. Every molecule will result in a characteristic Raman spectrum, which is the result of the combined Raman scattering of the molecular bonds and electron clouds in that particular compound. A complex organism will hence give a complicated spectrum consisting of the overlaid combined spectra from all the molecules (e.g., proteins, fatty acids, nucleic acids, etc.) in the sample, where signature peak heights and positions are representative for individual components of the cells [94]. This can be used to follow the change in chemical composition of single individual cells as a result of, e.g., growth rate or interaction with the environment, and in this way differentiation in a population can be determined on a single-cell level (see examples later in this chapter). Raman spectroscopy can be combined with confocal microscopy to provide 3D information on cell identity or chemical composition of, e.g., extracellular substances (EPS) in biofilms [106, 116, 144].

The Raman scattering is inherently very weak, and a number of methods exist to enhance sensitivity. Surface-enhanced Raman spectroscopy (SERS) is frequently used to amplify the weak Raman signals. In SERS the sample is placed on a typically silver- or gold-covered surface. The physical explanation for the enhancement (up to $10^{11}$ fold) is not fully elucidated, but it is believed that an increase in the electrical field due to the excitation of the gold or silver surface plasmons by the laser light source boosts the Raman scattering intensity [75]. SERS has successfully been used for identification and characterization of bacteria
In combination with the AFM, utilizing metal-coated tips, the Raman measuring capability can be combined with very high resolution, enabling chemical mapping of surfaces, e.g., of bacteria down to a molecular scale. In this technique, termed tip-enhanced Raman spectroscopy (TERS), the Raman excitation is performed at the metal-coated AFM tip, linking the atomic force microscopy high-resolution imaging to very localized SERS [20, 98, 100]. Further signal enhancement can be achieved using coherent anti-Stokes Raman spectroscopy (CARS). This technique relies on two laser excitation sources. These two lasers, the fixed frequency pump laser and the tunable Stokes laser, simultaneously excite the molecule to virtual state (X2) and vibrational state (X1) (see Fig. 4d, e): When the Stokes laser has the right frequency, the return from X2 to a lower vibrational energy state (X1) occurs via a stimulated Stokes emission. When the sample molecule is in this state, it can be further excited by a probe laser beam to the higher virtual energy state (X3) (in the actual setup this beam is provided by the Stokes laser). When the molecule relaxes to the ground state (R), it emits a photon with a higher energy than the excitation photon, resulting in an anti-Stokes effect, i.e., a higher frequency [11, 90]. This setup produces coherent anti-Stokes photons resulting in a dramatically enhanced signal. Furthermore, since the emitted Raman scattering has a shorter wavelength than the excitation photons, interference from fluorescence is eliminated [90]. A complication is that so-called phase matching is required to conserve the sum of photon momentum; it means that the strong confined beam of CARS photons is being emitted in its own direction, depending on the direction of the two incoming beams and their frequencies [23]. This method has already been used for imaging of bacterial cells, although at an experimental stage [25, 153]. The emergence of new commercial instruments with CARS-enhanced confocal microscopy gives great promise for the future coupling of structure and chemical composition of microorganisms.

2.9 Presentation and Analysis Software

Many software packages exist for the analysis of microscopy images. They can roughly be divided into: general purpose and dedicated programs, programs for presentation of single images or image stacks, and programs for analytical purposes. Representative examples are provided in Table 1.

3 Bacterial Single-Cell and Biofilm Microscopy, Bistability and Subpopulations

The following sections will concentrate on the phenomenon of bistability in bacterial populations and how microscopy of single cells and biofilm structures has revealed differentiation between cells in a population. *Bacillus subtilis* and
**Table 1** Examples of software packages for microscope image processing. Image processing programs

<table>
<thead>
<tr>
<th>Name</th>
<th>General purpose</th>
<th>Dedicated (instrument specific)</th>
<th>Analytical</th>
<th>2D</th>
<th>3D</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImagePro Plus</td>
<td>X</td>
<td>Xa</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td><a href="http://www.mediacy.com">http://www.mediacy.com</a></td>
</tr>
<tr>
<td>ImageJ and NIH Image</td>
<td>X</td>
<td>Xa</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>[2]</td>
</tr>
<tr>
<td>Zeiss ZEN (free viewer available)</td>
<td>X</td>
<td>Xa</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Carl Zeiss AG, Germany</td>
</tr>
<tr>
<td>Leica LAS (free viewer available)</td>
<td>X</td>
<td>Xa</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Leica Microsystems, Germany</td>
</tr>
<tr>
<td>ISA d</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>[87, 149]</td>
</tr>
<tr>
<td>ISA3D d</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>[14, 87]</td>
</tr>
<tr>
<td>COMSTAT and COMSTAT2 b</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>[65] <a href="http://www.comstat.dk">http://www.comstat.dk</a></td>
</tr>
<tr>
<td>Daime b</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>[34]</td>
</tr>
<tr>
<td>Imaris</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td><a href="http://www.bitplane.ch">http://www.bitplane.ch</a></td>
</tr>
<tr>
<td>Philip b</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td><a href="http://www.phlip.org">http://www.phlip.org</a></td>
</tr>
<tr>
<td>MicrAn and ConAn</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td><a href="http://www.biocon-online.de">http://www.biocon-online.de</a></td>
</tr>
</tbody>
</table>

* Via add-on module  
* Free (public domain)  
* Open source  
* Algorithm source code available

*Escherichia coli* will be used as the main case studies of bistability, whereas *Pseudomonas aeruginosa* will be used as a model organism in connection to differentiating subpopulations found in biofilms and visualized using confocal microscopy.

### 3.1 Bistability in B. subtilis

#### 3.1.1 Competence

By recent advances in the ability to investigate gene expression on a single-cell level, several studies have demonstrated bistability and differentiation in gene expression. Under certain growth conditions *B. subtilis* cells are able to enter the state of genetic competence, i.e., the bacteria can take up free DNA and incorporate it into their genome by recombination via the process of transformation [38]. When *B. subtilis* enters the stationary phase, competence occurs naturally in a subpopulation of cells and depends this way on the growth phase of the single cell as well as nutrient composition and availability in the near environment [37].
Competence development in *B. subtilis* is regulated by the transcriptional activator ComK, which binds to the *comK* promoter and thus acts as an auto regulator [136]. Fluorescent microscopy of single cells with GFP expression controlled by the *comK* promoter showed that the population divides into two subpopulations when entering the stationary phase, this way demonstrating bistability in competence expression; some cells express *comK* while others do not activate the ComK promoter [92, 127].

When cells are growing exponentially the level of ComK is low as the housekeeping protease complex MecA-ClpC-ClpP is degrading the ComK protein. Furthermore, at least two repressors, Rok and CodY, act on the *comK* promoter. At near stationary phase, quorum sensing results in upregulation of ComS, which will partly block the inactivation of ComK by binding to the MecA-ClpC-ClpP complex [52, 92, 93].

### 3.1.2 Sporulation

Differentiation in cell types can in some cases be distinguished by cell morphologies using light microscopy, but in many cases a clear picture of different cell types in a population can only be analyzed by use of transcriptional reporter gene fusions for each cell type in combination with fluorescent microscopy, which also will make quantification by flow cytometry of the cell populations possible. Using time-lapse microscopy, it is furthermore possible on a single-cell level to follow dynamic development in growth activity, structure and gene expression using fluorescently labeled appropriate reporter strains. When *B. subtilis* reaches the stationary phase, nutrients become limited, and an endospore will be produced in some, but not all cells. Many cells lyse at this point, liberating nutrients, and the release of the endospore from mother cells eventually takes place. The released nutrients support a second growth period and production of spores. The produced spores will maintain their dormant stage, which is highly resistant to environmental stress until a preferred environmental signal triggers germination.

Like in the case of ComK, the regulatory protein Spo0A has been found to exhibit bistable behavior during sporulation. Using a *gfp* fusion to a promoter under the control of Spo0A, it was shown by fluorescent microscopy that the population revealed a heterogeneous distribution of cells, with only a subpopulation of cells expressing Spo0A [47].

Spo0A is under the control of a positive feedback loop through activation of its own promoter as well as a double repressor system. Spo0A represses *abrB* and AbrB represses *sigH*, an activator of *spo0A*. A high expression of *spo0A* thus is necessary to reduce the AbrB-mediated repression of *sigH* resulting in further expression of *spo0A*. It was demonstrated using CFP and YFP in promoter fusions to AbrB and SpoIIA that expression of the *abrB* and *spoIIA* genes is distinct in individual cells during sporulation, resulting in a bimodal expression profile [140].

Single-cell tracking was used by Veening et al. [139] to investigate three cell forms in *B. subtilis*: spore-forming cells, lysing cells and actively growing cells.
reappearing after cells had entered stationary phase. It was found that the fate of most cells already is determined before reaching the stationary phase. Cells that result in spore formation will not grow after the exponential phase, whereas cells that start growing actively after the first exponential phase will not become spore formers. A cell population that has lysis as its final cell fate will be able to join both groups of cells. By time-lapse recording of colony development in \textit{B. subtilis}, using a GFP reporter system showing expression of SpoIIA, another regulatory protein regulating spore formation, it was visualized that spore-forming cells in most cases were situated next to each other (light grey cells in Fig. 5). This finding indicated a non-random development of the two subpopulations in a way that cell offspring’s will share a phenotype with their parents in a bistable \textit{B. subtilis} population [141].

3.1.3 Motility

Bistability in competence and sporulation in \textit{B. subtilis} is pronounced during the late exponential and stationary growth phase, and fluorescent reporter systems and microscopy have been found useful for demonstrating this phenomenon. A third bistable regulation takes place in \textit{B. subtilis}, namely in cell motility in exponentially growing cells. Only some cells express \textit{sigD}, the sigma factor necessary for flagella production, and the result is a differentiating cell population of motile and non-motile cells. The non-motile cells will often appear as chain-like structures, making it possible to distinguish them from the motile cells even by morphology using light microscopy (Fig. 6) [78].

3.2 Bimodal Gene Expression and Biofilm Formation

For the last decade, it has been well know and accepted that bacteria in most environmental settings live in surface-associated communities called biofilms [28–
The importance of detailed knowledge about this bacterial lifestyle has proven to be required in order to understand many aspects of bacterial biology and is relevant both in environmental microbiology and medical microbiology. An important part of a biofilm structure in many cases is the presence of an extracellular polymeric substance (EPS) that is produced by the cells and that holds the biofilm structure together. EPS binding material between cells of *E. coli* was demonstrated using atomic force microscopy (Fig. 7) [29, 78].

Vlamakis and colleges [143] have combined gene expression profile studies with spatio-temporal differentiation in matrix-producing, motile and sporulating cells in connection to biofilm development and architecture of *B. subtilis*. In this study fluorescent protein reporter fusions were used to track expression of EPS matrix-producing, sporulating and motile cell types during dynamic biofilm development over a 72-h period. It was found after cell sorting of harvested biofilm cells that motility was upregulated in the initial stages of biofilm formation. That matrix-producing cells started to dominate after 24 h growth, and sporulating cells showed up in the older biofilm after 48 h. All three cell types coexisted in the mature *B. subtilis* biofilm, and production of EPS was carried out by only a subpopulation of cells [24].

Direct localization of the different cell types was also mapped during biofilm growth and maturation, and showed that motile cells dominated in the early biofilm at the top layers and represented only a minor part in the mature biofilm, mainly localized at the substratum. The matrix-producing cells were found randomly throughout the biofilm structure, whereas the sporulating cells were found in the upper structures in the mature biofilm. Using dual reporters it was shown that the mature biofilm harbored all three cell types and that motile cells were
found mainly in distinct regions relative to sporulating cells that co-existed with the matrix-producing cells (Fig. 8).

Dual fluorescent-reporter systems combined with time-lapse microscopic recording was applied for the investigation of differentiation and transition of the three cell types at a single-cell level. By monitoring CFP-tagged cells reporting motility and YFP-tagged cells reporting matrix production, it was found that motile cells can perform a transition to matrix-producing cells. In the same way, it was shown that matrix-producing cells can turn into sporulating cells, whereas only a few motile cells have the ability to transform into sporulating cells (Fig. 9).

### 3.3 Persistence and Bistability in E. coli

Since the early days of antibiotic treatment of infections, it has been known that some bacteria develop resistance to certain antibiotics. The bacteria can cope with antibiotics by mutation, expressing efflux pumps, releasing indigenous antibiotic inactivation enzymes or the occasional acquisition of resistance-inferring genes from the environment. However, a subpopulation of cells in certain bacteria seems to have a different strategy in dealing with environmental stress. They develop persister cells with antibiotic tolerance, which is non-heritable and reversible, meaning that when the antibiotics are not present anymore the cells again become sensitive.

Until recently it has been difficult to isolate and investigate the small amount of persister cells developing in a population. Using microscopy in combination with microfluidic devices, phenotypic switching was studied in *E. coli*. The microfluidic
channels were dimensioned to only allow propagation in one dimension (Fig. 10) [7]. The system thus allows for monitoring individual cells during growth and response to antibiotics, in this case ampicillin. It was possible to find persister cells already present before antibiotic challenge as a small subpopulation of cells showing a much reduced growth rate. During the antibiotic treatment only the persister cells survived in the microfluidic channels, and after removal of the antibiotic media the persister cells could resume growth (Fig. 10) [7].

Development of persister cells is a spontaneous bet-hedging survival strategy allowing E. coli to distribute its population heterogeneously such that some cells at all times are prepared for changing, adverse environmental conditions.

3.4 Raman Microscopy of Bacterial Cells

Fig. 8 Micrographs showing biofilm structure of B. subtilis and the distribution of motile cells in blue, matrix-producing cells in red and sporulating cells in orange [143]. Reproduced with permission from Cold Spring Harbor Press

For Clostridium organisms, studies of the cell cycle have shown that cells germinating from spores develop rod-shaped cells, which eventually differentiate into
Fig. 9  Micrograph images showing dynamic development of single cells in a biofilm of a motile cells in blue and matrix-producing cells in red. The arrow shows a motile cell transitioning to a matrix-producing cell. b Matrix-producing cells in red and sporulating cells in green. The arrow shows matrix development followed by transitioning to a sporulation cell. c Motile cells in blue and sporulating cells in orange. The arrow shows that sporulating cells arise from non-motile cells (a few sporulating cells arise from motile cells, arrowhead) [143]. Reproduced with permission from Cold Spring Harbor Press

Fig. 10  Micrographs showing E. coli cells growing in a microfluidic chamber. Only slow-growing persister cells survived antibiotic treatment. a–c Cells are dividing and growing in narrow channels allowing the growth rate of the single cells to be monitored as the length of strings of cells developing over time. d Cells were exposed to ampicillin for 4 h. e, f After washing, cells were changed back to growth medium without ampicillin [7]. Reprinted with permission from AAAS
clostridial cell forms after which spores start to become visible. In this study it was demonstrated that Raman microscopy enables investigations of differentiation in cell physiology and composition on a single-cell level during the cell cycle of *C. acetobutylicum* [119]. In other examples, Raman microscopy has shown potential for investigation of the consequences of antibiotic treatment of bacterial cells [58, 99] and to differentiate between planktonic and biofilm-associated *Pseudomonas putida* cells [70]. Raman spectroscopy also has been used as a tool to determine identity of bacterial cells, although this requires a large training set (database) of spectra from already identified bacteria of the type to be determined, which by itself is not a trivial task [58, 113], reviewed recently by Harz [59].

3.5 *Pseudomonas aeruginosa* Biofilm Development and Differentiating Subpopulations

*Pseudomonas aeruginosa* has been used extensively for the study of microbial biofilm formation, and many of the most important contributions to our understanding of biofilm development comes from these studies. Lately, this organism has also been subject to differentiation studies and clinically relevant antibiotic treatment studies with the goal to investigate phenotypic heterogeneity in biofilm populations [9, 72, 80, 102, 148]. A combination of fluorescent reporter strains, confocal microscopy, fluorescent recovery after photo-bleaching (FRAP) and real-time microscopy has made it possible to follow the spatial distribution of phenotypic subpopulation development.

A mature biofilm of *P. aeruginosa* can be described as a mushroom-shaped structure composed of two major subpopulations, a subpopulation situated close to the substratum and a subpopulation forming the top of the mushroom [80]. The diversification into two subpopulations was shown by combining growth of GFP tagged *P. aeruginosa* in flow chambers with confocal time lapse microscopy in combination with FRAP. The GFP signal from cells in a section of a mature microcolony was bleached using high-intensity laser illumination in a rectangular region along the biofilm structure. The bleached area was monitored at small time intervals with respect to GFP fluorescent single-cell appearance. It was demonstrated that two populations of *P. aeruginosa* exist, one motile subpopulation forming the outer layer of the structure and able to move into the bleached region and one non-motile population forming the core of the microcolony (Fig. 11a–c) [72]. Furthermore, the phenotypic diversity and two-population development were demonstrated using a 1:1 mixture of a wild-type *P. aeruginosa* tagged with YFP and a non-motile pilA mutant of *P. aeruginosa* tagged with CFP. The role of the two populations in forming the final biofilm structure was in this way shown on a single-cell level as well as on a 3D structural level (Fig. 11d, e) [80, 103]. Interestingly, it was found that upon antimicrobial treatment of this biofilm, only one of the two subpopulations was sensitive to compounds like colistin,
tetracycline, ciprofloxacin, etc., implying that *P. aeruginosa* forms different sub-populations to have a higher chance of handling incoming perturbations. The surviving subpopulation of cells exhibits phenotypic tolerance and not resistance, as surviving biofilm cells harvested from antimicrobial-treated biofilms exhibit the same antimicrobial susceptibility phenotype as the cells that were used to initiate the biofilm (Fig. 11f, g) [72, 102].

![Fig. 11](image)

**Fig. 11** Micrographs showing a *top-down* view of GFP-tagged PAO1 cells in a microcolony. FRAP was applied to the colony by bleaching a rectangular area across the colony (a), followed by time-lapse recording using confocal laser scanning microscopy of the cells. b and c Show how only cells located in the periphery of the microcolony are motile and cover the bleached area [72]. d and e The initial development and the final mature 3D structure respectively of a mixture of motile *PAO1* tagged with YFP (yellow) and a *PAO1* pilA mutant tagged with CFP (blue) [103]. Reproduced with permission from John Wiley & Sons. Micrographs f, g shows 3D structure representations of live (GFP-tagged *green cells*) and dead [propidium iodide (PI)-stained *red cells*] distributed after treatment with colistin and ciprofloxacin, respectively [72, 102 and Haagensen, unpublished]
In sputum obtained from cystic fibrosis patients undergoing intensive antibiotic treatment, LIVE/DEAD® staining (Invitrogen, CA) in combination with confocal microscopy indicated that potentially persistent cells appear frequently. Colistin, a membrane-targeting agent, was used during the treatment, and cell sorting followed by plating of live and dead cells confirmed the existence of two populations and persistence of cells also upon antibiotic used in treatment (Fig. 12). As described for E. coli, growth rate-dependent development of tolerant cells and phenotypic differentiation are important survival strategies also for P. aeruginosa.

4 Yeast Single-cell and Biofilm Microscopy

Historically, microscopy of yeast cells has focused on free-living cells in pure culture. In this respect the yeast Saccharomyces cerevisiae has served as a successful model for the study of organelles and cell structures in the eukaryotic cell. S. cerevisiae is easily genetically modified, has a fast reproduction time and perhaps most importantly a large number of community resources exists, such as a complete set of GFP-tagged proteins and targeted knockout mutants of all genes in the genome [45, 71]. Though relatively small in comparison to other eukaryotic cells, with a cell size of 3–5 μm, S. cerevisiae live cell imaging has excelled in recent years with the development of STED microscopy and beam-scanning multifocal multiphoton confocal microscopy, which have led to resolution limits much below 100 nm [41, 79] (and Stelzer, this volume).
4.1 Cell-to-Cell Variation in Yeast Populations

As with bacteria, biochemical assays for yeast cells are based on the assumption that protein expression and localization are uniform throughout a population of isogenic cells. Genetic tools however are widely used to investigate cell-to-cell variation within a population. Examples of these are mating type switching in haploid cells, mating between cells of different mating type [129], a morphological shift in \textit{S. cerevisiae} from a yeast to a pseudohyphal form and a shift in \textit{Candida albicans} from a yeast to a filamentous phenotype [46, 88]. More recently, microscopic methods have been applied to screen for cell-to-cell variation in gene expression within populations.

GFP tagging of 4,156 \textit{S. cerevisiae} proteins in individual cell lines has been used to identify and verify protein localization by fluorescence microscopy [71]. While many proteins have specific cellular localization, some proteins vary their localization between cells. A classical example of this is the uneven distribution of the \textit{S. cerevisiae} mating type switching protein (Ash1p) between mother and daughter cells. Ash1p is asymmetrically distributed in a way that the concentration of Ash1p is higher in the daughter nucleus where it inhibits mating type switching [124]. Ash1p asymmetry is regulated at the mRNA level, with mRNA synthesized in the mother cells being transported to the daughter cell. This was elegantly shown in living yeast cells by fluorescence microscopy of \textit{ASH1} mRNAs interacting with a GFP-labeled MS2 bacteriophage coat protein through a stem loop structure introduced into the mRNA [12]. Tagging of mRNA with GFP-MS2 was later used to show that most mRNA species in \textit{S. cerevisiae} have a specific location in the cell and that localization is uniform among cells in a population [53, 151].

Protein abundance seems to vary much within populations. To understand the background of variation, Weissman and coworkers measured the abundance of 2500 protein in individual clones at the single-cell level [101]. They performed high-throughput flow cytometry of a library of GFP-tagged yeast strains and discovered that variation in protein expression is largely caused by stochastic variation at the level of mRNA. Interestingly, there are drastic differences in noise between the functional classes of proteins in \textit{S. cerevisiae}. Genes responding to environmental changes encode gene products with large variation, while proteins involved in structural processes vary less. These differences may reflect selective pressure for a given level of variation, where cellular processes that require accuracy will select for low variation. Large variation, however, may permit a population to express multiple phenotypes to optimize average fitness in changing environments.

4.2 Bistability in Yeasts

Subpopulations with inheritable differential expression of certain genes due to bistability are known from the common human opportunistic pathogenic yeast \textit{C.}
*C. albicans* can switch between spherical cells that form white colonies and bigger elongated cells that form opaque colonies \([110, 125]\). Bistability is regulated at the genetic level by the transcription factor Wor1p that is present in very low amounts in white cells and accumulates in opaque cells. Wor1p binds to the promoter of its own gene and induces its expression in a positive feedback loop \([69, 152]\). The positive feedback loop in combination with stochastic variation in Wor1p expression is suggested to be responsible for switching and inheritance of white and opaque states.

While investigations of bistability in *C. albicans* have been driven by macroscopic features, advanced microscopy such as microscopic high-content screening and high throughput flow cytometry combined with libraries of strains with GFP-tagged proteins may likely lead to the discovery of bistability in *S. cerevisiae* \([33, 71, 101, 142]\).

### 4.3 Microscopy of Candida albicans Biofilm

Microscopy of yeast communities has become increasingly important with a growing number of human infections caused by fungal biofilm on catheters and implants (recently reviewed by Ramage \([108]\)). Biofilms from the most common fungal pathogens, *Candida* spp., are currently being studied by scanning electron microscopy and confocal laser scanning microscopy (CLSM). While scanning electron microscopy reveals biofilm organization and extracellular matrix \([26]\), CLSM can be used to monitor live cell biofilm development in three dimensions over time \([26, 108, 120]\). Recently atomic force microscopy has also been used to visualize the surface structure of the *C. albicans* biofilm, though the full potential of the AFM for this purpose has probably not been fully exploited yet \([84]\).

A mature biofilm of *C. albicans* is composed of two morphotypes, a unicellular yeast and a multicellular hyphal form \([6, 26]\). Scanning electron microscopy revealed that both morphotypes can form biofilm individually, though the coexistence of hyphae with yeast cells appears to be essential for a dense biofilm \([6]\). Deletion of genes essential for filamentous growth in *C. albicans* leads to thin biofilms composed solely of unicellular yeast cells. Biofilms composed of hyphae are dense and appear to lack channel-like structures found in the wild-type *C. albicans* biofilms.

While morphology of *C. albicans* biofilms is well understood, little is known about the molecular mechanism underlying biofilm formation \([108]\). A limiting factor in this respect is the choice of model organism. Genetic modifications and screens in *Candida* species are cumbersome and often hampered by the existence of paralogous genes that mask the phenotype of a gene deletion. The closely related yeast, *S. cerevisiae*, offers an attractive alternative with its ability to form biofilm \([109]\) and the ease by which genetic modifications can be carried out in this organism. To further develop *S. cerevisiae* as a model for biofilm studies, we have recently developed CLSM methods for the study of biofilms of this organism.
4.4 Confocal Microscopy of S. cerevisiae Biofilms on Batch Culture Slides and in Flow Chambers

_Saccharomyces cerevisiae_ biofilm formation and development can be studied by CLSM (Fig. 13) applying the batch culture slide method described for _C. albicans_ and _C. glabrata_ with the modifications described in the figure legends to Fig. 13 [120].

With few exceptions, _S. cerevisiae_ biofilms can be studied in flow cells according to the protocol applied for _P. aeruginosa_ (Fig. 14; [131]). A necessary development was the choice of surface where _S. cerevisiae_ can adhere and form biofilm. While _P. aeruginosa_ and many other bacteria readily attach to silica surfaces, _S. cerevisiae_ adheres poorly to glass surfaces. Suitable surfaces for _S. cerevisiae_ biofilm formation are plastics such as, e.g., polyethylene (PE), polypropylene (PP) and to a lesser extent polyvinylchloride (PVC), which were first described for _S. cerevisiae_ biofilm assays [109]. Besides these polymers, different polyesters and slides coated with collagen or poly-L-lysine are suitable substrates for _S. cerevisiae_ biofilm assays in batch as well as flow cells (unpublished). While plastic cover slides are applicable as biofilm surfaces, several of them suffer from autofluorescence that disturbs CLSM visualization. Coverslips such as the Thermanox PE are autofluorescent in the range 380–545 nm, excluding work with blue and green dyes such as the vital stain Syto9 (Invitrogen. Irvine, CA), GFP and CFP. PVC on the other hand is without autofluorescence in the visible range and therefore an optimal choice as a surface for yeast biofilm imaging (Fig. 15).

**Fig. 13** CLSM of _S. cerevisiae_ (CEN.PK113.7D sfl1) batch biofilm after 24-h growth in synthetic complete medium with amino acids and 2% glucose (SC-ura). Cells were grown in a Lab-Tek™ Chamber Slide™ System; Permanox® (NUNC, Denmark) in 1 ml medium and stained 30 min with Syto9. Bottom left bar 30 μm. CLSM was performed with a Zeiss LSM510 microscope using a 63x/0.95NA water immersion lens. Bar 30 μm
Secondly, \textit{S. cerevisiae} biofilm formation is dependent on a haploid cell state \cite{109} and expression of cell surface adhesins such as Flo11p (Muc1p) or Flo1p. Most laboratory strains as well as many natural isolates of \textit{S. cerevisiae} do not express the \textit{FLO11} gene or other adhesion genes \cite{43}, and they are therefore not directly applicable for biofilm studies. The \textit{S. cerevisiae} strain background of choice for biofilm studies has so far been strain \textit{\Sigma}1278b \cite{109}. However, mutants

![Fig. 14](image1.png)

\textbf{Fig. 14} Experimental setup for \textit{S. cerevisiae} biofilm in flow cells. A flow cell with flow channels is covered with a PVC cover slip that serves as a surface for yeast biofilm attachment and development. A peristaltic pump ensures constant flow of media from the media bottle through the flow channels.

![Fig. 15](image2.png)

\textbf{Fig. 15} CLSM of \textit{S. cerevisiae} (CEN.PK113.7D \textit{sfl1}) biofilm in the flow cell setup shown in Fig. 14. Image was recorded after 42 h growth in continuous flow of synthetic complete medium with amino acids and 0.02% glucose (SC-ura). Biofilm formed on PVC cover slips (Rinzl, Electron Microscopy Sciences, Hatfield, PA) and was visualized by staining with Syto9. CLSM was performed with a Zeiss LSM510 microscope using a 40x/1.3NA oil immersion lens. Bar 30 \textmu m

Secondly, \textit{S. cerevisiae} biofilm formation is dependent on a haploid cell state \cite{109} and expression of cell surface adhesins such as Flo11p (Muc1p) or Flo1p. Most laboratory strains as well as many natural isolates of \textit{S. cerevisiae} do not express the \textit{FLO11} gene or other adhesion genes \cite{43}, and they are therefore not directly applicable for biofilm studies. The \textit{S. cerevisiae} strain background of choice for biofilm studies has so far been strain \textit{\Sigma}1278b \cite{109}. However, mutants
of other strain backgrounds such as S288c or CEN.PK may be used to study biofilms of *S. cerevisiae* if these strains express the *FLO1* or *FLO11* genes [43].

Besides the use of *S. cerevisiae* for identification of genes involved in yeast biofilm formation, maturation and detachment, *S. cerevisiae* biofilm in both batch and flow cells can effectively be screened for susceptibility to fungicides. Molecular targets for fungicides as well as fungicide resistance mechanisms may be uncovered by the combination of barcode-target yeast mutants and fluorescence microscopic high-content screening.

### 5 Future Perspectives

While the novel advances in microscopy have proven useful for investigation of microbial communities and microbial single cells, biological discoveries made on the basis of these technologies are only starting to emerge.

One major opportunity is to resolve live objects below the theoretical optical resolution of 200–250 nm with methods such as STED, STORM and SIM. These improved resolution limits enable increased insight into complex spatiotemporal processes such as cell cycle, DNA repair and DNA organization. Higher resolution of fluorescent tagged proteins and RNAs of unknown function that co-localize with others of known function will further aid in the assignment of function to the large group of genes with hitherto unknown role in the cell. Combined with Raman spectroscopy, high-resolution microscopy can also provide information on the molecular basis, localization and structure of extracellular matrix that is otherwise difficult to obtain.

Nanoscale spatial resolution by AFM facilitates visualization of cell surface structures such as extracellular polymers, flagella and pili. At the macromolecular level, the AFM has already proven to provide novel understanding of interactions between macromolecules, e.g., for protein-DNA binding kinetics.

Another aspect of the new technologies is high content automated screening. Automated high-resolution microscopy combined with libraries of, e.g., GFP-tagged proteins or knock-out mutants allows integrated analysis of antibiotic resistance, signal transduction, expression patterns and many other aspects of cell biology and physiology. As mentioned previously, screening of expression patterns is likely to reveal novel examples of bistabilities in microorganisms that are not readily recognized at the macroscopic level. High content automated screening may also find its application in evolution biology where clones of populations that have undergone experimental evolution may be screened for phenotypic differentiation.

Finally, physiological measurements of microbial cells in complex communities, with methods such as confocal Raman microscopy, will provide valuable insight into the physiology of complex microbial communities with respect to cross feeding between species and cell types, local gradients and organization of communities, and internal changes in metabolism. Information about physiological
processes in complex microbial communities has a high impact on our basic understanding of microorganisms and applied applications in biotechnology.

Acknowledgments This work was supported by grants from the Carlsberg Foundation and the Lundbeck Foundation to Janus A. J. Haagensen. Birgitte Regenberg was supported by The Danish Council for Independent Research | Natural Sciences (FNU). Claus Sternberg was supported by a grant from the Danish National Advanced Technology Foundation. The authors wish to thank Dr. Ninell P. Mortensen for information about atomic force microscopy, Dr. Rolf W. Berg for information about coherent anti-Stokes Raman spectroscopy and Rune L. Jensen for Fig. 14.

References

dimensional and multidimensional microscopy: image acquisition and processing, vol XIII. SPIE, San Jose


