Jörg Thomas Dickersbach and Gerhard Keller

Production Planning and Control with SAP® ERP

Galileo Press
Bonn • Boston
Contents at a Glance

1 Introduction ... 15
2 Tasks in Industrial Operations 19
3 Production Planning and Control in SAP ERP 59
4 Organizational Structures 79
5 Master Data ... 91
6 Sales and Operations Planning 147
7 Demand Management .. 205
8 Material Requirements Planning 225
9 Special Forms of Procurement 295
10 Long-Term Planning ... 323
11 Production Order Creation 337
12 Capacity Planning .. 389
13 Production Execution .. 433
14 Supply Chain Management and Integration
 with SAP APO .. 459
A Glossary ... 471
B List of Abbreviations ... 501
C Literature ... 503
D List of Transactions .. 507
E The Authors ... 517
Contents

Foreword ... 13

1 Introduction ... 15

1.1 Goal of This Book ... 15
1.2 Target Audience ... 16
1.3 Structure and Content ... 16
1.4 Restrictions ... 17

2 Tasks in Industrial Operations ... 19

2.1 Technical Tasks ... 19
 2.1.1 Development and Design .. 19
 2.1.2 Work Scheduling .. 23
 2.1.3 Programming ... 26
 2.1.4 Quality Management ... 30
 2.1.5 Production Execution ... 33
2.2 Business Tasks ... 35
 2.2.1 Sales and Distribution .. 35
 2.2.2 Product Cost Planning .. 38
 2.2.3 Materials Management .. 40
 2.2.4 Purchasing .. 42
 2.2.5 Production Planning .. 43
2.3 The Production Area in Industrial Operations .. 45
 2.3.1 Production in Computer Integrated Manufacturing 45
 2.3.2 Production as Part of Logistics .. 48
2.4 Characteristics of Production Type Creation ... 52
 2.4.1 Product Standardization .. 52
 2.4.2 Product Structure ... 53
 2.4.3 Production Type ... 55
 2.4.4 Production Organization ... 56

3 Production Planning and Control in SAP ERP 59

3.1 PP in the Context of SAP ERP ... 59
3.2 Processes in Production Planning and Control 62
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Production Types</td>
<td>64</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Discrete Manufacturing</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Repetitive Manufacturing</td>
<td>65</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Process Manufacturing</td>
<td>70</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Kanban</td>
<td>72</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Engineer-to-Order Production</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>Organizational Structures</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>Meaning of Organizational Structures</td>
<td>79</td>
</tr>
<tr>
<td>4.2</td>
<td>Organizational Structure Overview in SAP ERP</td>
<td>81</td>
</tr>
<tr>
<td>4.3</td>
<td>Planners in Design and Work Scheduling</td>
<td>86</td>
</tr>
<tr>
<td>4.4</td>
<td>MRP Controller, Capacity Planner, and Production Scheduler</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>Master Data</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>Master Data Overview</td>
<td>91</td>
</tr>
<tr>
<td>5.2</td>
<td>Material</td>
<td>92</td>
</tr>
<tr>
<td>5.3</td>
<td>BOM</td>
<td>100</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Areas of Use and Types of BOMs</td>
<td>100</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Material BOM</td>
<td>103</td>
</tr>
<tr>
<td>5.4</td>
<td>Work Center</td>
<td>112</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Role of the Work Center</td>
<td>112</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Basic Data for the Work Center</td>
<td>113</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Capacity</td>
<td>115</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Formulas for Capacity Load and Scheduling</td>
<td>121</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Costing</td>
<td>125</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Work Center Hierarchy</td>
<td>126</td>
</tr>
<tr>
<td>5.5</td>
<td>Routing</td>
<td>129</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Purpose and Structure of the Routing</td>
<td>129</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Routing</td>
<td>136</td>
</tr>
<tr>
<td>6</td>
<td>Sales and Operations Planning</td>
<td>147</td>
</tr>
<tr>
<td>6.1</td>
<td>Process Overview</td>
<td>147</td>
</tr>
<tr>
<td>6.2</td>
<td>Basic Technical Principles in Sales Planning</td>
<td>154</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Information Structures</td>
<td>154</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Planning Methods</td>
<td>158</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Product Group</td>
<td>161</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Planning Hierarchy</td>
<td>163</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Proportional Factors and Disaggregation</td>
<td>167</td>
</tr>
</tbody>
</table>
6.2.6 Versioning .. 169
6.3 Planning Table .. 170
 6.3.1 Planning Type ... 170
 6.3.2 Macros ... 174
 6.3.3 Planning in the Planning Table 176
6.4 Forecast ... 185
6.5 Event ... 191
6.6 Resource Leveling Using a Rough-Cut Planning Profile ... 194
6.7 Transferring Planning Data to Demand Management 198
6.8 Mass Processing .. 200

7 Demand Management .. 205
 7.1 Process Overview .. 205
 7.2 Time-Based Disaggregation 209
 7.3 Planning Strategy .. 211
 7.3.1 Selected Planning Strategies 211
 7.3.2 Consumption .. 215
 7.3.3 Planning Segments 216
 7.3.4 Planning Strategy and Requirements Class 217
 7.4 Editing Planned Independent Requirements 221
 7.4.1 Reducing the Planned Independent
 Requirements ... 223
 7.4.2 Reorganization of Planned Independent
 Requirements ... 224

8 Material Requirements Planning 225
 8.1 Process Overview .. 225
 8.2 Influencing Factors in Material Requirements
 Planning .. 230
 8.2.1 Lot Size .. 230
 8.2.2 Scrap .. 240
 8.2.3 Safety stock .. 244
 8.2.4 Master Data Selection 245
 8.3 MRP Procedures ... 246
 8.3.1 Material Requirements Planning 249
 8.3.2 Consumption-Based Planning 251
 8.3.3 Consumption Forecast 259
 8.4 Executing Material Requirements Planning 262
 8.4.1 Net Requirements Calculation Logic 262
8.4.2 Parameters for Material Requirements Planning ... 267
8.4.3 Planning Scope ... 271
8.5 Scheduling ... 272
8.5.1 Forward and Backward Scheduling .. 272
8.5.2 Scheduling In-House Production (Basic Date Determination) 273
8.5.3 Scheduling External Procurement ... 276
8.5.4 Planning Time Fence ... 278
8.6 Procurement Proposals .. 280
8.6.1 Planned Order and Purchase Requisition ... 280
8.6.2 Interactive Planning ... 283
8.7 Analysis .. 285
8.7.1 Stock/Requirements List and MRP List ... 285
8.7.2 Exception Messages ... 288
8.8 Plant Parameters and MRP Group ... 290

9 Special Forms of Procurement ... 295
9.1 Process Overview .. 295
9.2 Phantom Assemblies ... 297
9.3 Direct Production and Direct Procurement .. 300
9.4 Stock Transfer ... 309
9.5 Withdrawal from Alternative Plant .. 313
9.6 Production in Alternative Plant ... 314
9.7 Subcontracting ... 317
9.8 Consignment .. 322

10 Long-Term Planning ... 323
10.1 Process Overview .. 323
10.2 Planning Scenario ... 325
10.3 Executing Long-Term Planning ... 331
 10.3.1 Release and Planning File Entries .. 331
 10.3.2 Material Requirements Planning in the Planning Scenario 331
 10.3.3 Evaluating the Planning Scenario .. 332
 10.3.4 Transferring the Planning Scenario .. 334

11 Production Order Creation .. 337
11.1 Process Overview .. 337
11.2 Production Order .. 339
 11.2.1 Order Type .. 346
 11.2.2 Master Data Selection 348
 11.2.3 Status and Trigger Point 352
11.3 Conversion from the Planned Order 357
11.4 Interactive Production Order Creation 359
11.5 Scheduling .. 361
 11.5.1 Dates of the Production Order 361
 11.5.2 Finite Scheduling .. 363
 11.5.3 Transition Times ... 369
 11.5.4 Splitting and Overlapping 371
 11.5.5 Float Before Production and Safety Time 375
 11.5.6 Reduction .. 377
11.6 Availability Check .. 379
 11.6.1 Material Availability Check 380
 11.6.2 Parameters for the Material Availability Check ... 383

12 Capacity Planning .. 389
 12.1 Process Overview .. 389
 12.2 Capacity Requirements and Capacity Evaluation 390
 12.2.1 Capacity Requirements 390
 12.2.2 Standard Evaluations of Capacity Utilization 392
 12.2.3 Variable Evaluations of Capacity Utilization 394
 12.2.4 Cumulating the Capacity Requirements 398
 12.3 Checking Capacity Availability 400
 12.4 Finite Scheduling ... 406
 12.5 Dispatching .. 408
 12.5.1 Profiles for Dispatching 410
 12.5.2 Dispatching Sequence 417
 12.5.3 Sequence-Dependent Setup 418
 12.5.4 Midpoint Scheduling 423
 12.5.5 Mass Processing 425
 12.6 Capacity Planning Table 426

13 Production Execution .. 433
 13.1 Process Overview .. 433
 13.2 Releasing the Production Order 434
 13.3 Material Withdrawal ... 438
 13.3.1 Goods Issue Posting 438
 13.3.2 Picking .. 440
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3.3 Backflush</td>
<td>444</td>
</tr>
<tr>
<td>13.4 Confirmation</td>
<td>446</td>
</tr>
<tr>
<td>13.5 Goods Receipt</td>
<td>452</td>
</tr>
<tr>
<td>13.6 Settlement</td>
<td>456</td>
</tr>
<tr>
<td>13.7 Completion</td>
<td>457</td>
</tr>
<tr>
<td>14 Supply Chain Management and Integration with SAP APO</td>
<td>459</td>
</tr>
<tr>
<td>14.1 Supply Chain Management with SAP APO</td>
<td>459</td>
</tr>
<tr>
<td>14.2 Integration Scenarios</td>
<td>462</td>
</tr>
<tr>
<td>14.3 Technical Integration</td>
<td>464</td>
</tr>
<tr>
<td>Appendices</td>
<td>469</td>
</tr>
<tr>
<td>A Glossary</td>
<td>471</td>
</tr>
<tr>
<td>B List of Abbreviations</td>
<td>501</td>
</tr>
<tr>
<td>C Literature</td>
<td>503</td>
</tr>
<tr>
<td>D List of Transactions</td>
<td>507</td>
</tr>
<tr>
<td>D.1 Organizational Structure and Master Data</td>
<td>507</td>
</tr>
<tr>
<td>D.2 Sales and Operations Planning</td>
<td>508</td>
</tr>
<tr>
<td>D.3 Demand Management</td>
<td>509</td>
</tr>
<tr>
<td>D.4 Material Requirements Planning</td>
<td>510</td>
</tr>
<tr>
<td>D.5 Special Forms of Procurement</td>
<td>511</td>
</tr>
<tr>
<td>D.6 Long-Term Planning</td>
<td>511</td>
</tr>
<tr>
<td>D.7 Production Order Creation</td>
<td>512</td>
</tr>
<tr>
<td>D.8 Capacity Planning</td>
<td>513</td>
</tr>
<tr>
<td>D.9 Production Execution</td>
<td>515</td>
</tr>
<tr>
<td>D.10 Integration with SAP APO</td>
<td>515</td>
</tr>
<tr>
<td>E The Authors</td>
<td>517</td>
</tr>
<tr>
<td>Index</td>
<td>519</td>
</tr>
</tbody>
</table>
The production planning and control functions of SAP ERP are contained in the PP functionality. The most important PP processes are sales and operations planning, demand management, material requirements planning, long-term planning, production order creation, production order execution, and capacity requirements planning.

3 Production Planning and Control in SAP ERP

3.1 PP in the Context of SAP ERP

The main features of SAP ERP are as follows: an extensive range of business functions, a high level of modularity alongside close integration of individual modules, support for international requirements in the form of country-specific functions (such as Payroll, which is available in various country versions with the relevant statutory conditions and tax requirements), multi-lingualism, and the ability to run on a range of platforms.

SAP ERP is based on a three-tier client-server architecture and can be subdivided into two main work areas: the basis and the application. The purpose of the basis layer is to design the business applications separate from the system interfaces of the operating system and the database and communications systems, and to ensure that business transactions are executed quickly and efficiently. The application layer contains the implemented solutions that support the enterprise’s business requirements.

SAP ERP consists of business application modules that can be used both individually and in combination with each other. SAP's delivery strategy is to deliver the complete system to the customer and then to activate the required functions and business processes on-site and according to the customer's requirements. The disadvantage of this strategy is that the
individual customer requires an over-dimensioned computer configuration at the start of the implementation process. An advantage is that it is easier to activate functionalities in production operations from the existing range of solutions than it is to deliver them retroactively.

SAP ERP can be subdivided into three main areas: Accounting, Human Resources Management, and Logistics.

Accounting

Accounting maps business transactions in accordance with their financial value and is responsible for planning, controlling, and monitoring the value flow within the enterprise. It is subdivided into financial accounting and managerial accounting, according to the addressee group. Managerial accounting consists of cost accounting and activity accounting; its purpose is to provide the decision makers in the enterprise with quantitative information. Financial accounting is structured in accordance with statutory regulations; enterprises use it to comply with requirements for disclosure with regard to external parties, in particular tax authorities and investors. The main components that support the tasks of accounting are Financial Accounting (FI), Investment Management (IM), and Controlling (CO). The software is further subdivided into corresponding sub-modules.

Human resources management

Human Capital Management (HCM) is divided into the areas of personnel planning and development, and personnel administration and payroll. Personnel planning and development supports the strategic utilization of staff by providing functionality that enables the enterprise to systematically and qualitatively manage its staff. Personnel administration and payroll comprises all administrative and operational human resources activities.

Logistics

Logistics in the business context structures the flow of materials, information, and production from the supplier through production to the customer. The SAP ERP logistics application modules enable enterprises to plan, control, and coordinate their logistical processes on the basis of existing integrated data and functions across department boundaries. The integration of the individual application modules in SAP ERP prevents unnecessary and time-consuming multiple entries on the part of the staff who process business logistics transactions. Likewise, the integration of quantity-based processing steps includes the value-based side of
the business transaction and thus fulfils the requirements of accounting. Logistics contains the following individual application functionalities: Sales and Distribution (SD), Materials Management (MM), Production Planning and Control (PP), Quality Management (QM), Project System (PS), and Plant Maintenance (PM).

The PP link in this chain deals with quantity-based and time-based product planning and controls the production process. Besides its master-data maintenance functions, the PP functionality supports all quantity-based and capacity-based production planning and control steps. Production planning and control comprises various planning concepts, such as MRP II and kanban, and various production types, such as production by lot size, make-to-order production, variant production, repetitive manufacturing, and process manufacturing.

The various modules are closely interconnected due to integrated data retention, the internal flow of documents, and the functional integration of the software. This interconnectivity enables many possible scenarios: a production planning process can be triggered by Sales and Distribution; Production Planning can create a purchase requisition (in MM); a production confirmation within the plant data collection process can trigger a value-based update in Controlling and Human Resources Management in order to calculate salaries. Likewise, the high degree of integration between the software means that the recording of goods movements in the execution of a production order can be based on quantity and values (Keller, 1999, pp. 67–115).

The several thousand of SAP ERP customers in the various industries and countries have different requirements of production planning. These requirements are reflected in the customer’s system by parameterizing the relevant functions in a process known as Customizing. In this process, the required functions are set in accordance with the requirements of the industry, the product range, the production procedure, the product structure, and organizational and legal requirements. Chapters 6 to 13 use process modules to describe the most important function settings.

It is essential for the proper functioning of the system that you set and maintain the required basic data correctly. Chapter 5, Master Data, describes in detail the basic data required for production planning. The
focus there is on describing the basic data for production planning execution in companies with discrete manufacturing.

3.2 Processes in Production Planning and Control

Processes in production planning and production control comprise the following main areas:

- *Sales and operations planning* for determining the quantities to be produced
- *Material requirements planning* to calculate net requirements and component requirements, taking into account scrap and lot sizes
- *Capacity requirements planning* for detailed production planning, taking into account available capacities
- *Production control* to control and record the production process (create production documents, record confirmations)

These four areas represent the scope of the process only roughly. Figure 3.1 shows a detailed overview that explicitly illustrates the process modules that we will deal with in detail in subsequent chapters, along with their most important input and output values.

- **Sales and operations planning**

Sales planning, also referred to as demand planning, covers future requirements without considering stocks and available capacities. The sales history often serves as a basis for sales planning. Operations planning uses the results of the sales-planning process to plan the production quantities, and takes initial stocks and capacities into account on a general level.

- **Demand Management**

Demand management aligns sales planning with the customer requirements in accordance with the planning strategy, and thus calculates the independent requirements for production.

- **Material Requirements Planning**

Material requirements planning is the central function of production planning. It calculates requirement coverage elements for all MRP levels, based on the demand program, and taking into account lead times, lot sizes, and scrap quantities.
Long-term planning is basically a simulation of material requirements planning. It can examine how a change in planned independent requirements would affect capacity utilization, stocks, and external procurement. Long-term planning is also suitable for short-term simulations.

The central factor in controlling and recording the production process is the production order. This chapter describes how the production order is created—whether by converting a planned order or by means of interactive creation—and the functions that are executed in this process, such as master-data selection, scheduling, and availability checking.

Capacity requirements planning schedules in detail the worklist, which usually consists of the processes for created or released production orders. Capacity requirements planning delivers a production sequence that is feasible from the capacity viewpoint.
While the previous processes dealt with production planning, *production execution* is concerned with how the actual production as specified in the production order is recorded and controlled, from material withdrawal to order confirmation to storage and invoicing.

Chapters 6 to 13 cover these processes in detail.

3.3 Production Types

The *production type* characterizes the frequency with which a product is produced in the production process. The frequency with which production of identical or similar products is repeated and the production quantity of production orders are typical characteristics that determine the production type. Production organization is closely related to production type because the production type often significantly affects the structure of the production process. Thus, the *flow manufacturing* production type, for example, implies the production of large quantities of identical product types or products. At the same time, flow manufacturing ensures that the production equipment is arranged in accordance with the organizational form of flow manufacturing. A typical example is the assembly of cars in the automobile industry. The degree of product standardization and the depth of the product structure also often affect the actual production type used. This is why various forms of production types, implicitly including production organization, have arisen from the basic theoretical types (mass production, repetitive manufacturing, small-lot production, make-to-order production). The following are important production types (Keller/Curran, 1999, pp. 137–154):

- Discrete Manufacturing
- Repetitive manufacturing
- Process Manufacturing
- Kanban
- Engineer-to-Order Production

These types are briefly explained in the following sections. In this book, we restrict ourselves to discrete manufacturing because this is the most common type of production.
3.3.1 Discrete Manufacturing

Discrete manufacturing (also called shop floor production) describes the production of a product on the basis of production orders. Discrete manufacturing is used if the products in question change frequently, if the pattern of demand is very irregular, and if production is workshop-oriented in character. A range of master data is required for discrete manufacturing; the most important are the material, bill of material (BOM), work center, and routing (see Chapter 5).

Discrete manufacturing starts when a production order is created and processed. A production order is created either manually or when a planned order that was created in the production and procurement planning process is converted. A production order is a request to the production department to produce or provide products or services at a specific time and in a specific quantity. It specifies the work center and material components to be used for production. The creation of a production order automatically creates reservations for the required material components. Purchase requisitions are created for externally procured material components and services, and capacity requirements are created for the work centers at which the order will be executed.

Production orders are released on the release date, provided that the required materials and capacity are available. The relevant documents in the production order can be printed to prepare for the execution of the production order. The capacity situation can be evaluated and any required capacity leveling can be carried out in any phase of production order processing, although this is usually done before production starts. The components required to produce the products are read out from the production order, and the goods issue is posted. The product is then produced on the basis of the production order. The finished quantity and the services provided are then confirmed back to the production order. The product is put into storage and the goods receipt is posted. Finally, the production order is settled.

3.3.2 Repetitive Manufacturing

Repetitive manufacturing is characterized by the interval-based and quantity-based creation and processing of production plans (in contrast to
single-lot and order-based processing). With repetitive manufacturing, a certain quantity of a stable product is produced over a certain period of time. The product moves through the machines and work centers in a continual flow, and intermediate products are not put into intermediate storage. Figure 3.2 illustrates this concept using the example of motherboard production.

Figure 3.2 Producing a Motherboard on a Production Line

The work required for production control with repetitive manufacturing is significantly reduced compared to single-lot and order-based production control, and the entry of actual data is simplified.

Repetitive manufacturing is suitable for a variety of industries, such as branded items, electronics, semiconductors, and packaging. Repetitive manufacturing also can be used for pure make-to-stock production. In this case, production has no direct connection to a sales order. The requirements are created in the demand management process, and the sales orders are supplied from stocks. Sales order-based production—for example, in the automobile industry (Geiger/Kerle, 2001, pp. 69–95)—can also be implemented using the methods of repetitive manufacturing. In this case, production is directly related to the sales order or is triggered directly from the sales order.

The most important forms of master data in repetitive manufacturing are as follows:
The main differences between this data and the master data for discrete manufacturing are briefly described later.

If a material is to be produced by means of repetitive manufacturing, it has to be flagged accordingly in the material master. This is done in the SAP system in the MRP 4 view by setting the *Repetitive Manufacturing* flag.

A *repetitive manufacturing profile* is also assigned to the material. This profile determines the type of planning and confirmation. It specifies, among other things, whether reporting points will be used, whether production activities will be posted to the cost collector for material confirmations, whether a decoupled confirmation will be used, whether a backflush will be carried out for the entry of actual data, and which transaction types will be used.

Because there are different BOMs and routings for a material, depending on the production process, a *production version* is used to specify which BOM and which routing are to be used to produce the material. The alternative BOM for the BOM explosion, the plan category, the task list group, and the group counter for assignment to the plans also are specified in the production version. The production version also specifies the lot size for which the production version is valid. It is important to set the *Repetitive Manufacturing Allowed* flag. There can be one or many production versions for a material, and there has to be at least one production version in repetitive manufacturing. The MRP 4 view is used to create the production version for a material.

The costs incurred in repetitive manufacturing are posted to a *product cost controller*. In the process of entering actual data, the material costs and production costs are added to the product cost controller. Costs are subtracted from the product cost controller when a goods receipt, for
example, is posted. The product cost controller is created for a material within a plant in a specific production version.

Backflush
The BOM for the material to be produced specifies what quantities of which components are required for production. In repetitive manufacturing, not every goods issue is recorded at the same time as the physical withdrawal of the material from stock. Usually, component usage is automatically posted only when the finished product is received (backflush). To backflush, a storage location is specified in every BOM item, and the backflush is carried out from this location.

Production lines
Work centers in repetitive manufacturing are called production lines (see Section 5.4, Work Center) because the product moves through the machines in a continuous flow, and the machines are usually spatially arranged in a line. These can be simple production lines, which often consist of just one work center, or complex production lines, which consist of several work centers. The individual processing stations are set up as individual production lines and are grouped into a line hierarchy. A production line determines the available capacity of the processing station and is assigned to a single cost center.

Rate routings
In repetitive manufacturing, routings are known as rate routings. A rate routing contains the processes required to produce the material. Because the same product is produced over a long period of time in repetitive manufacturing, very simple routings can be used, often containing just one process. This kind of process specifies the production rate, which in turn specifies the quantity per time unit that is produced on the line (for example, 100 items per hour).

In repetitive manufacturing, the planned orders for a material that result from the production and procurement planning process are managed in a planning table. In these tables, the planner can schedule the production quantities on the assembly lines. In repetitive manufacturing, we use the term run schedule quantity instead of planned orders (see Figure 3.3).

In repetitive manufacturing, the components are supplied anonymously to the production line. This can be done very easily using the pull list. The components required on a production line for a specific period can be calculated in the pull list. The missing quantities that are detected can be replaced by means of direct stock transfers, for example, from the central warehouse to the production location.
This section allows you to monitor the capacity utilization on the different production lines.

<table>
<thead>
<tr>
<th>Capacity Data</th>
<th>Unit</th>
<th>Due</th>
<th>9/4/2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 1 Requirement</td>
<td>%</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Available Capacity</td>
<td>h</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Line 2 Requirement</td>
<td>%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Available Capacity</td>
<td>h</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

This section allows you to assign quantities to the production lines.

<table>
<thead>
<tr>
<th>Material Data</th>
<th>Unit</th>
<th>Due</th>
<th>9/4/2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material A Requirements</td>
<td>PCS</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Available Quantity</td>
<td>PCS</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Line 1 Production</td>
<td>PCS</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Line 2 Production</td>
<td>PCS</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Not Assigned</td>
<td>PCS</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 3.3 Planning Table in Repetitive Manufacturing

The production of the product usually takes place in a continuous flow along the production line. Entry of actual data is carried out at regular intervals for each finished production quantity. Component use and production activities are automatically posted when the finished product is received. In the case of longer production lead times, actual data can also be recorded along with reporting points within the production line, in order to post consumption data more promptly (see Figure 3.4).

Figure 3.4 Actual Data Recording in Repetitive Manufacturing
3.3.3 **Process Manufacturing**

Process manufacturing is characterized by batch-oriented and recipe-oriented production of products or co-products in the process industry. Process manufacturing is used mainly in the following industries: chemicals, pharmaceuticals, food and luxury foods, and process-based electronics (Datta, 2001, pp. 145–172). A number of processes can be used in process manufacturing. These are described below.

Continuous production is the name given to a process in which production runs within a specific period in an ongoing procedure. Material components are continuously supplied to the production line, and the finished product is continuously produced. The plant and machinery are continuously and fully in use, so partial orders and partial allocations cannot be handled.

In **discontinuous production**, as the name suggests, the products are not produced in a continuous process. Instead, the material components are provided and weighed out as required for each step of the procedure. The same line can be used to produce multiple products.

Regulated production is used if the product quality requirements are very specific, or if legal regulations apply, such as the Good Manufacturing Practices (GMP) overseen by the U.S. Food and Drug Administration (FDA). Examples of this process can be found in the pharmaceuticals industry and certain parts of the food and cosmetics industries. In regulated production, orders can be created only with approved recipes. If changes need to be made to master recipes, these are subject to change administration procedures. Filling processes that are separate from and take place after the actual production process can also be handled in process manufacturing. Loose goods (bulk) are moved from production and held in intermediate storage containers until they are filled. This production type supports complex filling procedures and simple manual filling procedures. Process orders that are created on the basis of a filling recipe are a prerequisite for the filling process.

The central master data elements in process manufacturing are the *material*, the *BOM*, the *resource*, and the *master recipe*.
Process manufacturing starts when a *process order* is created and processed in accordance with a master recipe. A production order is created either manually or when a planned order that was created in the production planning process is converted. A production order is a request to the production department to produce or provide products or services at a specific time and in a specific quantity. It specifies the resource and material components that are to be used for production. The creation of a production order automatically creates reservations for the required material components. Purchase requisitions are created for externally procured material components and services, and capacity requirements are created for the resources at which the order will be executed. Production orders are released on the release date, provided that the required materials and capacity are available. At the time of release, an automatic batch-determination process can be run for components that are subject to a batch management requirement. The relevant documents in the production order can be printed in order to prepare for the execution of the production order.

The capacity situation can be evaluated and any required capacity leveling can be carried out in any phase of the production order-processing process, although this is usually done before production starts. Production can now begin, with or without the use of process management. If process management is used to execute a process order, this serves as the interface between the SAP system and process control. The flexible structure of this interface makes it possible to connect automated, semi-automated, and manually controlled plant and equipment to the production process.

Once the process order or the relevant phases of the process order is released for production, control recipes are generated from the process instructions in the process order. *Control recipes* contain all the information required for the process control function to execute a process order. Next, either the control recipes for the process control system themselves or the control recipes in the form of process instruction (PI) sheets are sent to the relevant process operator. In the latter case, the process instructions are expressed in natural language so that the process operator can display them on-screen and process them.
The process data that results from the execution of the process order is sent back to the SAP system or is transferred to external function modules for further processing, or both. This data is transferred from the process control function to the various recipients by means of the process-coordination interface with the help of process messages. A material consumption message, for example, causes a goods issue to be posted for a component.

If a process order is executed without process coordination, the material components required to produce the finished product are withdrawn for the process order, and the goods issue is posted in the inventory management menu. The required finished product is then produced in accordance with the process order. The quantities created and the products produced are confirmed to the process order, the finished product is put into storage, and the goods receipt is posted.

In the invoicing process for a process order, the actual costs incurred for the order are assigned to one or more recipient objects (such as the finished material or a sales order). The process data documentation process creates lists of production-relevant and quality-relevant data that can be optically archived. We draw a distinction here between order logs and batch logs. Order logs contain all the quality-relevant SAP data that is created for a process order, while batch logs contain all the quality-relevant data having to do with producing a batch. The structure, content, and processing of batch logs comply with the international standards defined in the GMP guidelines for the pharmaceuticals and food industries.

3.3.4 Kanban

Kanban is a procedure for production control and material flow control that avoids time-consuming requirements planning and implements requirements-oriented production control. With kanban, a material is produced or procured only when it is actually required. A specific quantity of the components required to produce a material are stored on-site in containers. When a container is empty, this component is replenished according to a pre-defined strategy (in-house production, external procurement, or stock transfer). In the interval between the request for replenishment and the delivery of the re-filled container, the other con-

72
tainers simply do the work of the empty one. Figure 3.5 illustrates the basic principle of kanban.

![Figure 3.5 Basic Principle of Kanban](image)

The replenishment process is largely automatic in the kanban procedure, which greatly reduces the amount of manual posting work required. Also, the kanban process reduces stock levels, as only components are produced that are genuinely required. The material is not pushed through the production process as specified by an overall plan; rather, it is requested by one production level (consumer) from the previous production level (source) as needed.

With kanban processing, the plant is divided into production supply areas (PSAs). The components required for production are stored in these PSAs and various work centers can take what they need from the PSAs. A kanban control cycle is defined in order to specify how a material should be obtained within a PSA. The control cycle defines a replenishment strategy for the material that specifies, for example, whether the required material is to be produced in-house or procured externally. The control cycle also specifies the number of containers in circulation between consumer and source and the quantity per container.

Replenishment strategies specify how a material component should be replenished and which of the following replenishment elements should be created for this purpose:
In-house production
- Manual kanban
- Replenishment with run-schedule quantity
- Replenishment with production order

External procurement
- Replenishment by order
- Replenishment with schedule agreement
- Replenishment with summarized just-in-time (JIT) call

Stock transfer
- Replenishment with reservation
- Replenishment with direct transfer posting
- Replenishment by transport requirements of warehouse-management (WM) administered storage location

Replenishment with kanban is very simple. First, a material is produced at a machine. The components required to produce it are available on-site in containers, ready for withdrawal. If one of these containers is empty, the source that is responsible for its replenishment has to be informed. If kanban processing without SAP system support is being used, the consumer sends a card (by courier, for example) to the work center (source). The card contains the information about which material is required, in what quantity, and where it should be delivered to. The process gets its name from the Japanese word for these cards (kanban). The source can now produce or procure the material and then re-fill the container (see Figure 3.6).

If kanban processing with SAP ERP system support is being used, the containers are managed in the system and have a specific status. Once the last component is withdrawn from a container, the status of that container is simply changed from “full” to “empty.” This status change is the kanban signal and it can be set by passing a barcode reader over the card attached to the container. It is also possible to have the system display the containers in a production area in the form of a kanban table and to make the status change there. The kanban signal now triggers the replenishment process and creates—for example—a production
order in accordance with the replenishment strategy. The source then processes the production order and the finished material is transported back to the container. The status of the container is set to “full” again (via barcode or kanban table), and the goods receipt for the material is posted with reference to the procurement element. The SAP system also supports other kinds of kanban procedures besides the classic procedure described above.

While in the classic kanban procedure the user sets the container to “empty” using a barcode or a kanban table, thus triggering the kanban signal, in the kanban procedure with a quantity signal the user or a plant data-collection system enters the relevant withdrawn quantities into the system. As soon as the quantity in the container equals zero or drops below a specific threshold value, the system automatically changes the status.

Unlike classic the kanban procedure, where the number of containers and their quantities are fixed in advance, in the event-driven kanban procedure a container is created only when required. The required quan-
quantity is then entered directly. Once the replenishment has been made, the container is deleted.

Kanban can also be used for production supply with the use of anticipatory material requirements planning. The replenishment elements in this case are created by a material requirements planning run. However, the replenishment elements function as a preview for the source; they do not directly trigger production or procurement. The setting of the kanban container to full or empty controls only the flow of material itself and the actual production process. Confirmations and goods receipts are usually posted without reference to the kanban process.

3.3.5 Engineer-to-Order Production

Experience has shown that conventional production processes are not particularly successful for complex make-to-order production processes.

The production orders used for the MRP II system are scheduled and handled separately without any coordination support between processes of different production orders. For example, process 25 of production order A-100 cannot start until process 10 of production order B-50 has started. Therefore, engineer-to-order production uses network techniques for scheduling and coordinating processes and cost accounting.

MRP II uses the BOM to split up the production of the finished product into smaller units, while engineer-to-order production divides the overall production process into work packages, which are specified in a work breakdown structure (WBS). There is not always a one-to-one correspondence between these structures and the units defined in the BOM.

MRP separates technology, maintenance, and other customer-specific activities from production. Engineer-to-order production, on the other hand, requires that production-specific and non-production-specific processes be handled together.

Another difference between MRP II and engineer-to-order is that standard costs are used for MRP II, while actual costs are used for engineer-to-order production.
Classic network systems are not very suitable for production management. They do not support inventory management, material requirements planning, or scheduling and tracking tasks within the factory. What engineer-to-order production needs is a system that combines the best of both procedures. You need a solution that can execute production orders, inventory management, and material requirements planning, like MRP II, and also handle task coordination, budget planning, and actual cost calculation.

You also need a system for processing complex production processes for industry, such as those for aircraft, ships, and large machines. A significant part of the lead time and added value of these product types is not taken into account in production-based processes such as design, work scheduling, and order costing.

For these reasons, engineer-to-order production uses work breakdown structures and networks. A WBS is a hierarchical model of the tasks that need to be carried out in a project and is the basis for the organization and coordination of the project. It contains the work, the time, and the costs that are associated with every task. A provisional WBS is created for the preparatory planning stage (that is, during the tender procedure). It then can be extended dynamically during the lifetime of the project.

Networks are used to model detailed processes, such as the staff, capacities, materials, production resources, tools, and services required for the project. Networks also can describe extensive relationships between processes. They are connected to the WBS and thus provide an extra level of detail for representing the overall structure of the work.

The starting-point is to set up a *project structure* in order to create a customer quotation. Once the project structure has been set up, detailed cost plans are developed and integrated into the budget. Based on the level of detail, plans are developed from bottom to top, while budgets are developed from top to bottom. Capacities are also checked, and the project details are combined to form a customer quotation. A sales order can be created as a special order type with project reference (project order). The project is then released for project structure plan-driven and network plan-driven processing. Down payments, invoice payments, and any other customer payments are assigned to the relevant WBS element.
Costs and material withdrawals are posted directly to the network or WBS elements. The system monitors the availability of the budgeted funds. The costs are invoiced at regular intervals or at the close of the project, either to the general ledger, the cost center, or directly to the revenue calculation system.

The finished products are listed in the sales order and are managed using the make-to-order production scenario. Production orders are created either manually or automatically by the system. These orders are then linked to the relevant WBS element. Thus, production is controlled by conventional production orders, and the actual production costs and milestones are posted to the relevant assigned WBS element.
The structure of the company is modeled with the organizational structures of the SAP ERP system. For the area of production planning and control, the organizational units of Company Code, Plant, and Storage Location are the most important. A different type of organizational element is represented by the different types of planners that represent individuals within the company and are linked to the areas of responsibility.

4 Organizational Structures

4.1 Meaning of Organizational Structures

For German-speaking countries, Nordsieck (1972) characterized a company's organizational structure by the design of the structural and process organizations that mutually determine each other.

Organization modeling deals with a company's structural organization, unlike the process organization, which deals with the logical time structuring of the work processes. To manage complex social structures, as represented by companies with their many employees, it is necessary to subdivide these structures into manageable units. Organization modeling therefore refers to the mapping of a company's organizational structure into the structures of a standard application system. The organization model describes the organizational units, their structural relationships, and the users of an information system (Keller, 1993, p. 626). These organizational structures are shown using organization charts.

The traditional approach to organizational structuring places the main emphasis on the structural organization (Kosiol, 1962). It considers the association of basic task-sharing, functional, and organizational elements such as the job, instance, and management of an organizational structure, and the associated relationships between the individual elements. Jobs, as the smallest action unit of a company, either arise from the combination of the same tasks at the work object and differing performance
tasks, or they consist of the same performances for differing objects. Instances combine the management tasks of different jobs into a higher job (Wöhe, 2008).

The job classification as the design product represents the relationship between the jobs as a hierarchical structure, in that it links these together from the point of view of the authority. We can derive different structural types that express, on the one hand, the ranking ratio with the formal information flow and communication flow within the organization and, on the other hand, the development of organizational forms as a reaction to changing market conditions. These forms include line organization, functional organization, team organization, object-oriented models, and matrix organization.

Line organization Within each line organization, a specialist disciplinary superior is uniquely assigned. Each job is linked to all superior instances through a single decision, information, and communication line. The benefits of this are a simple organizational design, a precise delimitation of competencies, and a precise assignment of responsibility and communication relationships. However, you will notice the adverse effects of overloads on the superordinate instances because jobs of the same rank are linked to each other through the superordinate instance.

Functional organization provides for a specialization of management. Here, the principle of the work distribution is also applied to the management tasks. Instances should have specialized knowledge from which a multiple chain of command for subordinate jobs is derived; that is, with this type of command and control, individual or multiple jobs each have several direct superior instances. Because the requirements for the management’s expertise increase as areas of responsibility grow, it is useful to define the area of responsibility: unclear terms of reference lead to responsibility conflicts. The fundamental idea behind functional organization is the correlation of the formal decision-making responsibility with the professional competence (specialist knowledge) in an instance.

Team organization unites the advantages of the clear competence and responsibility definition of the line system with the advantages of the specialization of the functional organization. Staff positions are established...
that are neither instances nor executing jobs, but rather management supports. Here, the tasks of decision preparation, control, and specialist consulting are performed without the decision-making authority.

Object-oriented models are also referred to as divisional organizations, branch organizations, or business area organizations. With these models, the company is structured according to an object characteristic or by a category, for example, a product. Companies design their organizational structure according to the object principle, by forming categories by product, product group, market, customer, or region. A category organization develops with similar business divisions that group the operational functions under responsible management. Thus, the business divisions are given a profit responsibility in the sense of a profit center; that is, they are managed like companies in the company.

In matrix organization, elements of the function orientation such as design, production, and development, and elements of the object orientation such as material, markets, and customers are joined together, generating synergy effects. For project management or product management, different projects or products thus form the elements of the object orientation. This organizational model shows that we are turning away from strictly hierarchical pyramid models through the use of multi-dimensional arrangements, with holistic project tasks becoming increasingly important.

4.2 Organizational Structure Overview in SAP ERP

The structure of a company can be mapped by different organizational units for accounting, logistics, and human resources management. Organizational units help to depict a company’s structural and process organization.

The complexity of the company structure can be mapped by the multiple relationships of the SAP ERP organizational units. In some cases, there are several possibilities for displaying an issue in the SAP ERP system. For instance, a company can consist of several legal entities, for each of which separate, individual financial statements must be prepared at the end of the financial year.
The internal arrangement of companies is defined, among other things, by the responsibility for particular customer or product groups, which are grouped into strategic business areas. The activities within a business area can be distributed across several companies. Finally, a location can be used by several companies and within various business areas. To map a company, you first need, as a minimum, an SAP ERP system in which all accounting and logistics functions are shown.

Profitability analysis is performed in the results area in the SAP ERP system. The cost-center and cost-element accounting are performed in the controlling area. Finally, the company code controls financial accounting and legally represents the enterprise. The creation of internal financial statements for the business areas is supported by the business divisions, and the individual locations are described by plants. Figure 4.1 shows an example of how company structures can be depicted in the SAP system. The human resources functions have no effect on the arrangement of the logical SAP ERP organizational units.

The key organizational elements of the SAP ERP system will be described below. In addition to the organizational elements for the production logistics, we also will discuss the most important overall organizational units.

In the context of production planning and control, the company code, the plant, and the storage location are the most important organizational units. Figure 4.2 shows their dependencies.
A plant is always uniquely assigned to a company code, which can contain several plants. Each plant can contain several storage locations. A storage location is already defined with a plant reference, which means that the name of the storage location is only unique within a plant. All organizational structures are assigned to a client in SAP ERP.

The client is a unit that is organizationally self-contained and also self-contained in terms of commercial law and data technology, within a SAP ERP system; it has separate master records and an independent set of tables. It represents the highest element of the SAP ERP organizational structure. The additional organizational elements and the master and transaction data are created and managed within a client. Often the client represents a concrete company or a group, within which there are several independent company units. An SAP ERP system can contain several clients, that is, logical units. A user always logs on to the SAP ERP system with his or her user ID in a client (see Figure 4.3).
Company code The *company code* is an organizational unit for accounting that is used to map independent units for which accounts are prepared in line with legal requirements. The legally prescribed balance sheets and income statements are prepared at the level of the company code. A company that has activities in several countries will require a company code to be set up for each country. The company code is defined with the Customizing Transaction EC01 and only contains *City*, *Country*, *Currency*, and *Language* (see Figure 4.4). Most objects are directly or indirectly linked to the company code.

![Figure 4.4 Company Code](image)

Plant A *plant* is an organizational unit within logistics. Different production locations are mapped with the plant in SAP ERP. The company can be classified here from the point of view of production, procurement, maintenance, and planning. The plant can be, for instance, an operating site or a subsidiary within a company. It organizes the tasks for the production logistics, and it can be a physical production site or the logical grouping of several sites in which materials are produced or goods and services are provided. The following tasks, among others, are performed at this level:

- Inventory management
- Evaluation and physical inventory of stocks
- Demand management and production planning
Organizational Structure Overview in SAP ERP

- Production control
- Requirements planning

A plant can have various purposes. As a maintenance plant, it contains the maintenance objects that are physically located in this plant. The maintenance measures to be performed are laid down within a maintenance planning plant. As a retail site, it provides goods for distribution and sale.

Plants belong to exactly one company code. A company code can represent several plants. From a logistical point of view, the plant is the central organizational unit and is maintained with Customizing Transaction EC02 (see Figure 4.5).

As well as the address, the organization structure plant contains the factory calendar, the meaning of which is discussed in more detail in Chapter 11, Production Order Creation, in the context of scheduling. The assignment of plant to company code is performed using Customizing Transaction OX18 (see Figure 4.6).
Organizational Structures

Storage Location

Several storage locations can be defined within a plant. A storage location is the place where materials are physically stored. Different materials may be stored at one storage location. Storage locations are maintained plant-specifically with Customizing Transaction OX09, as shown in Figure 4.7.

4.3 Planners in Design and Work Scheduling

The tasks of Design focus on the development, setup, and structure of the products. From the point of view of production planning, the creation of the Bill of Material (BOM) is the most important design task. Work scheduling plans the machines and processes for the production and is thus closely linked to the maintenance of the master data work center and routing. Table 4.1 lists the relevant planners in SAP ERP, which are responsible for the master data, and the areas to which they belong.
4.4 MRP Controller, Capacity Planner, and Production Scheduler

While the planners listed in Section 4.3 are responsible only for the maintenance of master data, production planning, and control fall into the task area of the following planners: MRP controller, capacity planner, and production scheduler. These three planners correspond to the roles that SAP sees for production planning and control. Several, or even all, roles can be assigned to one person in a company.

These roles are significant primarily because they allow the fast selection of planning objects according to responsibility.

The MRP controller is responsible for production planning, that is, for the quantitative coverage of the requirements. The area of responsibility covers the creation of procurement proposals and the monitoring of material availability. Operations planning also often falls into this area.
of responsibility. In the short term, the transition to the tasks of the production scheduler is smooth because postponements lead to only brief shortages due to irregularities or disruptions in production.

MRP controllers are maintained with the Customizing path **Production • Requirements Planning • Master Data • Define MRP Controller** and contain the name and the contact data of the corresponding person (see Figure 4.8).

<table>
<thead>
<tr>
<th>Plant</th>
<th>WE 81 Wehr Hamburg</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRP Controller</td>
<td>X81 Xavier</td>
</tr>
<tr>
<td>Telephone</td>
<td>123456</td>
</tr>
<tr>
<td>Accounting organizational area</td>
<td></td>
</tr>
<tr>
<td>Business Area</td>
<td></td>
</tr>
<tr>
<td>Profit Center</td>
<td></td>
</tr>
<tr>
<td>Recipient for mail to MRP controller</td>
<td></td>
</tr>
<tr>
<td>Recipient Type</td>
<td></td>
</tr>
<tr>
<td>Recipient</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.8 MRP Controller

Capacity planner

The job of the *capacity planner* is to schedule production operations in such a way that they fulfill the following conditions:

- They are feasible in terms of capacity
- As far as possible, no delays arise with respect to customer requirements or subsequent production operations
- Production costs remain low (setup times can increase due to the sequence of the operations, or unfavorable work center utilizations may arise)
Index

A

ABC indicator, 262
Accounting, 60
Activity, 200
 Category, 201
Activity type, 125, 471
Actual costs, 471
Adaptive design, 21
Adaptive planning, 24
Adjust dates, 366
Advanced Planner and Optimizer, 461
Aggregation, 160, 179
 Level, 203
Alpha factor, 186
Alternative BOM, 471
 Selection, 351
Alternative selection, 350
Alternative sequence, 141
Area of validity, 471
Assembly, 471
Assembly order, 471
Assembly scrap, 240
ATP logic, 386
Automatic goods receipt, 455
Automatic reorder point planning, 252, 471
Automatic scheduling, 368
Automatic setup time adjustment, 420
Availability check, 379, 386, 438, 465, 471
Availability check log, 381
Availability operation, 383, 384
Available capacity, 116, 126, 400, 471

B

Backflush, 68, 444, 471
Backlog, 400, 471
Backorder processing, 471
Backward scheduling, 275, 363, 366, 471
Base quantity, 107
Base unit of measure, 155, 471
Basic date determination, 268, 273, 274
Basic dates, 274
Basic load, 392, 395, 400
Basis, 59
Batch, 72, 472
Batch determination, 472
Batch master record, 472
Batch record, 472
Batch search strategy, 472
Batch where-used list, 472
Beta factor, 186
Bill of material (BOM), 472
Blocked stock, 263
BOM, 54, 86, 100, 330
 Category, 101, 472
 Component, 296, 350, 472
 Explosion, 110, 472
 Group, 472
 Header, 473
 Item, 473
 Selection, 245
 Status, 108
 Usage, 109, 330
Bottleneck work center, 473
Branch operation, 142
Break plan, 119
Buffer, 375, 377
Building-site principle, 57
Bulk material, 473

C

CAD, 473
Campaign, 473
Campaign planning, 473
Capacity, 115, 116, 473
 Availability check, 380, 390, 392, 400, 401, 404
 Category, 118, 124
 Capacity planner group, 473
 Evaluation, 390, 392
 Increase, 431
 Leveling, 410, 473
 Load, 194, 473
 Planner, 88
 Planning table, 426
Index

Requirement, 116, 390, 473
Requirements planning, 338, 389, 474
Utilization, 197
Version, 330
Change management, 17
Change master record, 474
Change number, 474
Characteristic, 154
Characteristic values combination, 163
Check control, 346, 347, 383, 384, 403, 404
Checking group, 383, 387, 474
Checking rule, 383, 386
Check scope, 383, 387
Clean-out recipe, 474
Client, 83, 474
Close gaps, 413
Collective availability check, 383
Collective conversion, 358
Collective order, 300, 474
 Overview, 306
 Release, 308
 Schedule, 309
 Scheduling, 308
Collective release, 436
Company code, 84, 474
Completion, 457
Component assignment, 140
Components, 345
Component scrap, 241
Computer Aided Design (CAD), 19, 27, 45
Computer Aided Manufacturing (CAM), 45
Computer Aided Programming (CAP), 27
Computer Aided Quality Assurance, 45
Computer Integrated Manufacturing (CIM), 45, 47
Confirmation, 446, 450, 474
Confirmation for the time ticket, 447
Confirmation of the capacity requirement, 405
Consider operation sequence in the order, 409, 413
Consignment, 296, 322, 474
 Purchase requisition, 322
 Special procurement key, 322
Consistent planning, 159, 161, 167
Constant model, 474
Consumable material, 474
Consumption, 215, 475
Consumption-based planning, 226, 251, 475
Consumption indicator, 218
Consumption intervals, 215
Consumption mode, 215
Container, 475
Continuous production, 70
Control cycle, 73, 475
Control key, 138, 368, 390, 448, 455
Controlling area, 125, 475
Control profile, 405, 415
Control recipe, 475
Control recipe destination, 475
Control station, 475
Conversion from the planned order, 357
Copying firm planned orders, 335
Copy profile, 202
Cost center, 125, 475
Costing, 125, 475
Costing object, 475
Cost planning, 38
Creation, 338, 359, 384, 401
Cumulation of capacities, 398
Customer, 475
Customer requirements, 475

D
Dangerous goods, 476
Days' supply, 245
De-allocation, 430
Demand management, 205
 Transfer, 198
Demand program, 476
Dependent demand, 280
Dependent requirement, 476
Design, 21, 86
Design office, 87
Design phases, 21
Design process, 19
Design with clear principle, 22
Detailed planning, 476
Digital signature, 476
Direct procurement, 296, 300, 476
 Default values, 304
Index

Segment, 304
Direct production, 296, 300
Mail partner, 305
Special procurement key, 301
Disaggregation, 160, 167, 179, 476
Discontinuous production, 70
Discrete manufacturing, 65
Dispatch, 390, 429
Dispatch at best time for setup, 413, 422
Dispatch at earliest point in time, 413
Dispatching, 408
Dispatching period, 476
Dispatching sequence, 412
Distribution function, 210, 391
Distribution key, 391, 401, 415
Distribution resource planning, 18
Distribution strategy, 209, 391
Distribution type, 209
Document management system, 476
Dynamic lot size creation, 235, 236

E

Earliest date, 362
Edit, 362
Engineering change management, 476
Engineer-to-order, 476
Establishing functions, 22
Evaluation profile, 405, 415
Event, 191
Exception message, 288, 477
Ex-post forecast, 477
External processing, 477
External procurement, 477

F

Factory calendar, 85, 364, 477
Field catalog, 157
FIFO principal, 477
Final confirmation, 477
Final costing, 39
Final issue, 477
Final issue indicator, 477
Finite scheduling, 44, 363, 390, 406, 413, 477
Firming, 284
Firming type, 278
Fixed costs, 234
Flexible planning, 157, 172
Flexible production machines, 34
Float after production, 477
Float before production, 361, 375, 477
Flow manufacturing, 477
Flow principle, 57
Forecast, 185, 259, 477
Error, 478
Model, 185, 259, 478
Parameter, 478
Profile, 189
Requirements, 478
Strategy, 187
Forecast-based planning, 254, 477
Formula, 123
Formula (CAP), 478
Forward scheduling, 363, 366
Functional organization, 80

G

Gamma factor, 186
Goods issue, 478
Posting, 438, 440, 442, 444
Goods receipt, 452, 478
Processing time, 275, 277, 280
Goods transport, 48
Graphic profile, 397
Groff, 236
Groff lot-sizing procedure, 236
Gross requirements planning, 262, 329, 478
Group counter, 478

H

Highlighting objects that belong together, 429
Human Capital Management, 60

I

Independent requirements, 41
Individual capacity, 118, 372, 478
Individual conversion, 357
Individual customer requirement, 478
Industrial operations, 19
Industry sector, 94
Information structure, 151, 157
In-house production time, 274, 275, 478
Initial setup state, 420
Inspection characteristic, 145, 479
Inspection equipment monitoring, 32
Inspection equipment planning, 31
Inspection lot, 479
Inspection method, 479
Inspection operation, 479
Inspection plan, 129, 144, 479
Inspection plan creation, 31
Inspection point, 479
Integration models, 464, 465
Integration scenarios, 462
Interoperation time, 479
Interval, 368
Intra material, 107
Issue storage location, 479
Item category, 105, 479
Item detail, 109
Item number, 438
Item overview, 104

K

Kanban, 72, 479
Key figures, 154

L

Laboratory, 87
Last lot exact, 236
Latest date, 362
Layout key, 417
Lead time, 368
Lead time scheduling, 268
Least unit cost procedure, 235, 236
Level-by-level planning, 160, 161, 167
LIFO principle, 479
Line balancing, 479
Line design, 479
Line hierarchy, 68, 480
Line organization, 80
Line segment, 480
List profile, 397, 405, 417
Location groups, 370
Logistics, 48, 49, 50, 60
Logistics Information System (LIS), 480
Long-term planning, 323, 480
Long-term simulation, 323
Lot size, 230, 480
Lot-size range, 136
Lot size with splitting, 232
Lot sizing procedure, 480
Low-level code, 266, 270, 480
Low-level coding, 480

M

Macro, 172, 174, 180
Macro-logistics, 49
Make-to-order production, 56, 76, 206, 212, 480
Make-to-order segment, 217
Make-to-stock production, 211
Make-to-stock segment, 209, 216
Manual programming, 27
Manual reorder point planning, 252, 480
Manufacture of co-products, 481
Manufacturing order, 481
Mass processing, 200, 425
Job, 202, 204
Mass production, 55
Master data, 91
Selection, 348
Master production scheduling, 250, 481
Master recipe, 481
Master schedule item, 481
Material, 92, 481
Material availability check, 379, 380, 481
Material BOM, 104, 481
Material costs, 481
Material master, 92
Material master record, 481
Material overhead costs, 481
Material Requirements Planning (see MRP), 40, 225, 227, 249, 262, 323, 481
Material shortage, 481
Materials Management (MM), 40
Materials planning, 482
Material stock, 431, 482
Material type, 95, 482
Material valuation, 482
Material withdrawal, 438
Matrix organization, 81
Meta logistics, 49
Micro logistics, 49
Midpoint scheduling, 412, 423
Milestone, 448
Milestone confirmation, 482
Minimum lot size, 482
Minimum overlapping time, 374
Minimum processing time, 372
Minimum range of coverage, 482
Minimum send-ahead quantity, 374
Minimum stock level, 482
Missing parts
 Information system, 382
 List, 380, 381
 Overview, 381
Movement type, 438, 452
Move time, 132, 361, 370
 Matrix, 370
Moving average model, 187
MRP, 295
 Interactive, 283
 List, 268, 285
 Lot size, 230, 236
Mixed MRP, 262
 Area, 17, 482
 Controller, 87, 483
 Element, 483
 Group, 483
 List, 483
 Lot size, 483
 Procedure, 246, 483
 Run, 483
 Type, 247, 483
Multilevel BOM, 101
 Explosion, 110
Multiple commitment, 430

N
NC programming, 26, 29
Net change planning, 269, 270
 In the planning horizon, 269
Net identifier, 241
Net requirements calculation, 256, 265, 483
Net requirements planning, 264
Network, 77, 483
No check, 385
Non-stock item, 106, 483
Non-work periods, 413
Number of splits, 372

O
Object dependencies, 483
Object-oriented models, 81
Offline programming, 28
Online programming, 28
Opening period, 275, 276, 277, 376
Opening period for planned order, 483
Opening stock, 161, 328
Opening stock level, 177
Operating facilities, 484
Operating time, 117
Operation, 484
Operation date check, 414
Operation details, 139
Operation durations, 364
Operation lead time, 484
Operation number, 484
Operation scrap, 241
Operation segment, 362, 484
Operations plan, 148, 149, 178, 194
Operative production rate, 484
Operative takt time, 484
Optimizing lot-sizing procedure, 233
Option profile, 397
Order, 484
Order BOM, 484
Ordering costs, 234
Order lead time, 484
Order of priority for BOM usages, 330
Order placement type, 207
Order processing, 35, 37, 42
Order profile, 281
Order record, 484
Order-related production, 484
Order report, 287
Order settlement, 484
Order split, 484
Order type, 346, 484
Order type-dependent parameter, 346
Organizational structure, 79, 485
Organizational units, 81
Organization modeling, 79
Original design, 21
Original plan, 485
Index

Overall capacity load, 400
Overall profile, 396, 404, 411
Overhead cost order, 485
Overlapping, 364, 371, 373, 485

P

Parallel sequence, 141
Parameter, 122
Partial confirmation, 448, 485
Partial conversion, 358
Part period balancing, 235, 236
Pegged order, 485
Pegged requirement, 485
Pegging, 485
Period indicator, 259, 485
Period lot sizing procedure, 485
Period pattern, 255
Period profile, 405
Period split, 209, 210
Phantom assembly, 297
 BOM-specific, 297
 Production order, 298
 Special procurement key, 297
 Stock/requirements list, 299
Phantom item, 296, 298
Phase, 485
Picking, 440, 485
Picking list, 441
Planned costs, 486
Planned delivery time, 277, 486
Planned independent requirement, 199, 205, 221, 332, 486
Planned lot size, 486
Planned order, 280, 357, 486
Planned order date, 486
Planned withdrawal, 486
Planner group, 87
Planning, 386
 At assembly level, 214
 Cycle, 257
Entries, 253, 266
File, 266, 270, 331
File entry, 331, 357, 486
Group, 136
Hierarchy, 151, 155, 163
Horizon, 486
ID, 486
 Independent requirements, 41
Level, 154, 158, 187
Log, 409
Material, 213, 214, 486
Method, 151, 155, 158
Mode, 268
Parameter, 155
Plant, 486
Releasing, 331
Run, 486
Run type, 268, 487
Scenario, 323, 325, 333
Scope, 271
Segment, 209, 216
Strategy, 208, 211, 217, 219
Table, 151, 176
Table profile, 487
Time fence, 278, 286, 487
Type, 151, 170, 172
With final assembly, 212
Without final assembly, 213
With planning material, 213
Plant, 84
Plant data collection, 487
Plant distribution, 199
Plant maintenance, 487
Plant parameters, 290
Plant stock, 263
Play-back procedure, 28
PM structure element, 106
Pooled capacity, 120
Pool of orders/operations, 408, 426
Preliminary costing, 38, 487
Preliminary costing for quotes, 38
Price, 234
Price control, 457
Process control system, 433
Process data documentation, 488
Process data request, 488
Processing key, 267, 268
Process instruction, 488
Process instruction characteristic, 488
Process management, 488
Process manufacturing, 70, 488
Process material, 488
Process message, 488
Process message destination, 489
Process order, 71, 489
Process organization, 79
Process planning, 489
Process structure, 489
Procurement, 25, 42
Procurement logistics, 52
Procurement proposal, 489
Procurement type, 280, 489
Product cost controller, 67
Product costing, 489
Product cost planning, 38
Product creation, 55
Product design, 20
Product group, 152, 161, 176, 179, 489
Production campaign, 489
Production cost collector, 489
Production costs, 489
Production execution, 33, 433
Production in alternative plant, 296, 314
Production line, 68, 489
Production logistics, 51
Production lot, 490
Production order, 307, 337, 339, 357, 433, 490
Creation, 359
Production order planning, 43, 45
Production organization, 56
Production overhead, 490
Production plan, 490
Production planning, 43
Production Planning & Detailed Scheduling (PP/DS), 45
Production rate, 490
Production resources/tools, 143
Production resource/tool, 490
Production scheduler, 89, 346, 366
Production scheduling
Profile, 346, 347
Production scheduling profile, 404, 434, 435, 452, 455
Production series, 490
Production storage location, 490
Production structure, 54
Production supply area (PSA), 73
Production type, 52, 55, 64, 490
Production version, 67, 145, 350, 465
Product specification, 20
Product standardization, 52
Product structure, 53
Profit planning, 148
Programming, 26
Progress confirmation, 449
Project structure, 77
Proportional factor, 162, 165, 166, 167, 179, 199
PRT, 144
Check, 380
Pull list, 490
Purchase order, 490
Purchase requisition, 282, 306, 310, 490
Purchasing department processing time, 277, 278
Purchasing info record, 490
Purchasing (MM-PUR), 42
Purchasing organization, 490
Quality assurance, 18
Quality Inspection (QM-IM), 30
Quality management, 30, 490
Quality notification, 491
Queue time, 132, 361, 362, 369, 491
Quota arrangement, 491
Quote processing, 36
Quote selection, 42
Range of coverage, 491
Rate-based planning, 491
Rate of capacity utilization, 118, 365
Rate routing, 68, 134, 491
Read master data, 352
Recipe, 70, 100, 491
Recipe counter, 491
Recipe group, 491
Recipe material list, 491
Reduce lead time, 364
Reduction, 135, 364, 370, 373, 375, 377
Level, 377, 379
Strategies, 377, 378
Reduction of capacity requirements, 392
Reduction of the planned independent requirements, 223
Reference operation set, 133, 491
Reference rate routing, 134, 491
Regenerative planning, 24, 269
Regulated production, 70
Release, 384, 401, 433
Release period, 376, 492
Index

- Remaining capacity requirements, 492
- Reorder point, 251, 491
- Reorder point planning, 251, 492
- Reorganization, 224
- Repeat planning, 24
- Repetitive manufacturing, 55, 65, 207, 492
 - Profile, 67
- Repetitive manufacturing profile, 492
- Replenishment lead time, 492
- Replenishment strategy, 73
- Reporting point, 492
- Reporting point backflush, 492
- Required splitting, 373
- Requirement, 492
- Requirement record confirmed, 406
- Requirements class, 217
- Requirements grouping, 492
- Requirements planning, 40, 492
- Requirements type, 217, 219, 492
- Reservation, 438, 493
- Reserved stock, 493
- Resource, 493
- Resource category, 493
- Resource leveling, 149, 194
- Resource network, 493
- Resources planning, 25
- Return operation, 142
- Robot, 28
- Rough-cut planning profile, 194
- Rounding, 238
- Rounding profile, 238
- Routing, 23, 86, 129, 133, 136, 493
- Routing header, 493
- Routing management, 131
- Routing selection, 349
- Routing type, 133
- Row totals, 178
- Run schedule header, 493

S

- Safety stock, 244, 251, 286, 493
- Safety time, 244, 361, 376
- Safety times, 361
- Sales and Distribution (SD), 35
- Sales logistics, 50
- Sales market, 35
- Sales & Operations Planning (SOP), 147, 493
- Sales order, 493
- Sales order costing, 493
- Sales order planning, 266
- Sales order stock, 493
- Sales plan, 178
- Sales planning, 147
- Sample, 494
- SAP Business Workplace, 306
- Scheduling, 268, 368, 435, 494
 - Formula, 364
 - Profile, 346, 348, 366, 378
 - Type, 365
- Scheduling basis, 124
- Scheduling margin key, 276
- Scheduling type, 272
- Scheduling work center, 494
- Scrap, 240, 494
- Search function, 427
- Seasonal trend model, 494
- Secondary resource, 494
- Selection ID, 330, 349, 350
- Selection key, 429
- Selection profile, 396, 405, 414
- Semi-finished product, 494
- Sequence, 141, 389, 494
 - Category, 142
 - Definition, 494
- Sequence-dependent setup, 418
- Sequence overview, 141
- Sequence schedule, 495
- Sequencing, 495
- Serial number, 495
- Service, 495
- Set combinations, 397
- Settlement, 456, 495
- Settlement rule, 456
- Setup, 362, 495
- Setup group, 418
 - Category, 418
 - Key, 418
- Setup group category, 495
- Setup group key, 495
- Setup matrix, 419
- Setup time, 495
- Setup time optimization, 412
- Shift, 119
- Shift definition, 495
- Shift sequence, 119, 495
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shop floor information system, 18</td>
</tr>
<tr>
<td>Shop floor papers, 495</td>
</tr>
<tr>
<td>Shop paper printing, 435, 438</td>
</tr>
<tr>
<td>Short-term simulation, 323</td>
</tr>
<tr>
<td>Simulation, 325</td>
</tr>
<tr>
<td>Long-term, 323</td>
</tr>
<tr>
<td>Short-term, 323</td>
</tr>
<tr>
<td>Simulative planned order, 332</td>
</tr>
<tr>
<td>Single-level BOM, 101, 495</td>
</tr>
<tr>
<td>Small-lot production, 56</td>
</tr>
<tr>
<td>Sorting, 417, 427</td>
</tr>
<tr>
<td>Special forms of procurement, 295</td>
</tr>
<tr>
<td>Special procurement key, 295</td>
</tr>
<tr>
<td>Special procurement type, 296</td>
</tr>
<tr>
<td>Special stock, 495</td>
</tr>
<tr>
<td>Splitting, 364, 371, 372</td>
</tr>
<tr>
<td>Standard available capacity, 117, 119, 495</td>
</tr>
<tr>
<td>Standard BOM, 496</td>
</tr>
<tr>
<td>Standard cost estimate, 496</td>
</tr>
<tr>
<td>Standard costing, 496</td>
</tr>
<tr>
<td>Standard evaluations, 392</td>
</tr>
<tr>
<td>Standard plan, 496</td>
</tr>
<tr>
<td>Standard sequence, 142, 496</td>
</tr>
<tr>
<td>Standard trigger point, 355, 496</td>
</tr>
<tr>
<td>Standard value, 122, 139</td>
</tr>
<tr>
<td>Key, 114, 122, 139</td>
</tr>
<tr>
<td>Start in the past, 366</td>
</tr>
<tr>
<td>Static lot sizing procedure, 496</td>
</tr>
<tr>
<td>Statistical work center, 126</td>
</tr>
<tr>
<td>Statistics currency, 155</td>
</tr>
<tr>
<td>Status, 352, 368, 380, 435</td>
</tr>
<tr>
<td>Check, 386</td>
</tr>
<tr>
<td>Stock, 263, 496</td>
</tr>
<tr>
<td>Stock determination, 441, 442, 446</td>
</tr>
<tr>
<td>Group, 443</td>
</tr>
<tr>
<td>Rule, 443</td>
</tr>
<tr>
<td>Stock in quality inspection, 263, 496</td>
</tr>
<tr>
<td>Stock in transfer, 263, 496</td>
</tr>
<tr>
<td>Stock item, 106</td>
</tr>
<tr>
<td>Stockkeeping unit, 496</td>
</tr>
<tr>
<td>Stock material, 497</td>
</tr>
<tr>
<td>Stock overview, 263</td>
</tr>
<tr>
<td>Stock/requirements list, 285, 497</td>
</tr>
<tr>
<td>Stock transfer, 296, 309</td>
</tr>
<tr>
<td>Document flow, 311</td>
</tr>
<tr>
<td>Planned order, 312</td>
</tr>
<tr>
<td>Processing, 310</td>
</tr>
<tr>
<td>Special procurement key, 310</td>
</tr>
<tr>
<td>Stock transport order, 497</td>
</tr>
<tr>
<td>Stock type, 497</td>
</tr>
<tr>
<td>Storage, 362</td>
</tr>
<tr>
<td>Storage costs, 497</td>
</tr>
<tr>
<td>Storage costs indicator, 233</td>
</tr>
<tr>
<td>Storage location, 86, 441, 442, 497</td>
</tr>
<tr>
<td>Storage location MRP, 497</td>
</tr>
<tr>
<td>Strategy, 208, 211, 217, 219</td>
</tr>
<tr>
<td>Group, 209</td>
</tr>
<tr>
<td>Profile, 405, 406, 408, 411, 421, 431</td>
</tr>
<tr>
<td>Structural organization, 79</td>
</tr>
<tr>
<td>Subcontracting, 296, 317, 497</td>
</tr>
<tr>
<td>Component, 320, 497</td>
</tr>
<tr>
<td>Planned order, 319</td>
</tr>
<tr>
<td>Process variants, 321</td>
</tr>
<tr>
<td>Purchase requisition, 319</td>
</tr>
<tr>
<td>Special procurement key, 318</td>
</tr>
<tr>
<td>Sub-item, 497</td>
</tr>
<tr>
<td>Suitability test, 32</td>
</tr>
<tr>
<td>Summarized BOM, 101</td>
</tr>
<tr>
<td>Supply area, 498</td>
</tr>
<tr>
<td>Supply chain management, 459</td>
</tr>
<tr>
<td>Surplus or deficit, 452</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>Tabular capacity planning table, 432</td>
</tr>
<tr>
<td>Takt, 498</td>
</tr>
<tr>
<td>Takt area, 498</td>
</tr>
<tr>
<td>Takt time, 498</td>
</tr>
<tr>
<td>Task list, 498</td>
</tr>
<tr>
<td>Group, 498</td>
</tr>
<tr>
<td>Header, 498</td>
</tr>
<tr>
<td>Type, 498</td>
</tr>
<tr>
<td>Usage, 114</td>
</tr>
<tr>
<td>Teach-in procedure, 28</td>
</tr>
<tr>
<td>Team organization, 80</td>
</tr>
<tr>
<td>Teardown, 362, 370</td>
</tr>
<tr>
<td>Teardown time, 498</td>
</tr>
<tr>
<td>Technical completion, 457</td>
</tr>
<tr>
<td>Test equipment, 498</td>
</tr>
<tr>
<td>Text item, 106</td>
</tr>
<tr>
<td>Time-based disaggregation, 209</td>
</tr>
<tr>
<td>Time-based scaling, 427</td>
</tr>
<tr>
<td>Time event, 448</td>
</tr>
<tr>
<td>Time-phased materials planning, 257, 499</td>
</tr>
<tr>
<td>Time profile, 405, 416</td>
</tr>
<tr>
<td>Today scheduling, 366</td>
</tr>
</tbody>
</table>

527