Contents

Preface ix

1. GENERAL CONSIDERATIONS 1
 1.1 The need for symmetry-adapted basis functions 1
 1.2 Fundamental concepts 2
 1.3 Definition of invariant blocks 3
 1.4 Diagonalization of the invariant blocks 5
 1.5 Transformation of the large matrix to block-diagonal form 6
 1.6 Summary of the method 7

2. EXAMPLES FROM ATOMIC PHYSICS 9
 2.1 The Hartree-Fock-Roothaan method for calculating atomic orbitals 9
 2.2 Automatic generation of symmetry-adapted configurations 12
 2.3 Russell-Saunders states 14
 2.4 Some illustrative examples 15
 2.5 The Slater-Condon rules 18
 2.6 Diagonalization of invariant blocks using the Slater-Condon rules 20

3. EXAMPLES FROM QUANTUM CHEMISTRY 27
 3.1 The Hartree-Fock-Roothaan method applied to molecules 27
 3.2 Construction of invariant subsets 28
 3.3 The trigonal group C\text{_3_v}; the NH\text{_3} molecule 30
4. GENERALIZED STURMIANS APPLIED TO ATOMS 33
 4.1 Goscinskian configurations 33
 4.2 Relativistic corrections 38
 4.3 The large-Z approximation: Restriction of the basis set to
 an R-block ... 42
 4.4 Electronic potential at the nucleus in the large-Z
 approximation .. 43
 4.5 Core ionization energies 46
 4.6 Advantages and disadvantages of Goscinskian configurations
 ... 49
 4.7 R-blocks, invariant subsets and invariant blocks 50
 4.8 Invariant subsets based on subshells; Classification according
 to M_L and M_s .. 56
 4.9 An atom surrounded by point charges 62

5. MOLECULAR ORBITALS BASED ON STURMIANS 71
 5.1 The one-electron secular equation 71
 5.2 Shibuya-Wulfman integrals and Sturmian overlap integrals
 evaluated in terms of hyperpherical harmonics 78
 5.3 Molecular calculations using the isoenergetic configurations
 .. 85
 5.4 Building $T^{(N)}_{\nu'\nu}$ and $\Theta^{(N)}_{\nu'\nu}$ from 1-electron components 87
 5.5 Interelectron repulsion integrals for molecular Sturmians
 from hyperspherical harmonics 88
 5.6 Many-center integrals treated by Gaussian expansions
 (Appendix E) ... 93
 5.7 A pilot calculation 97
 5.8 Automatic generation of symmetry-adapted basis functions 98

6. AN EXAMPLE FROM ACOUSTICS 101
 6.1 The Helmholtz equation for a non-uniform medium 101
 6.2 Homogeneous boundary conditions at the surface of a cube 101
 6.3 Spherical symmetry of $v(x)$; nonseparability of the
 Helmholtz equation 103
 6.4 Diagonalization of invariant blocks 105

7. AN EXAMPLE FROM HEAT CONDUCTION 111
 7.1 Inhomogeneous media 111
 7.2 A 1-dimensional example 112
 7.3 Heat conduction in a 3-dimensional inhomogeneous medium 114
C.3 Harmonic projection 163
C.4 Generalized angular momentum 164
C.5 Angular and hyperangular integration 165
C.6 An alternative method for angular and hyperangular integrations 168
C.7 Angular integrations by a vector-pairing method 170

Appendix D INTERELECTRON REPULSION INTEGRALS 173
D.1 The generalized Slater-Condon rules 173
D.2 Separation of atomic integrals into radial and angular parts 174
D.3 Evaluation of the radial integrals in terms of hypergeometric functions 175
D.4 Evaluation of the angular integrals in terms of Condon-Shortley coefficients 177

Appendix E GAUSSIAN EXPANSION OF MOLECULAR STURMIANS 179
E.1 Expansions of Coulomb Sturmian densities in terms of Gaussians 179

Appendix F EXPANSION OF DISPLACED FUNCTIONS IN TERMS OF LEGENDRE POLYNOMIALS 185
F.1 Displaced spherically symmetric functions 185
F.2 An alternative method 186
F.3 A screened Coulomb potential 187
F.4 Expansion of a displaced Slater-type orbital 188
F.5 A Fourier transform solution 190
F.6 Displacement of functions that do not have spherical symmetry 193

Appendix G MULTIPOLE EXPANSIONS 195

Appendix H HARMONIC FUNCTIONS 199
H.1 Harmonic functions for \(d = 3 \) 199
H.2 Spaces of higher dimension 200

Bibliography 207
Index 221