Stimulation of Trigeminal Afferents Improves Motor Recovery After Facial Nerve Injury

Functional, Electrophysiological and Morphological Proofs

Bearbeitet von
Emmanouil Skouras, Stoyan Pavlov, Habib Bendella, Doychin N. Angelov

ISBN 978 3 642 33310 1
Format (B x L): 15,5 x 23,5 cm
Gewicht: 207 g

Weitere Fachgebiete > Medizin > Klinische und Innere Medizin > Neurologie, Neuropathologie, Klinische Neurowissenschaft

Zu Leseprobe

schnell und portofrei erhältlich bei

beck-shop.de
DIE FACHBUCHHANDLUNG

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
Contents

1 Introduction .. 1

2 Materials and Methods ... 3
 2.1 First Major Set: Mild Indirect Stimulation of the Trigeminal Afferents
 After Combined Surgery on the Infraorbital and Facial Nerves
 by Removal (Clipping) of the Contralateral Vibrissal Hairs 3
 2.1.1 Animal Groups and Overview of the Specific Methods Used
 in the First Experimental Set ... 3
 2.1.2 Combined Nerve Surgery (FFA + ION-S) .. 5
 2.1.3 Increased Ipsilateral Vibrissal Use (Vibrissal Stimulation, VS)
 After Combined Surgery in Group 2 ... 8
 2.1.4 Manual Stimulation of Vibrissal Muscles After Combined Surgery
 in Groups 3 and 4 .. 8
 2.1.5 Observations on Whisking Behavior ... 9
 2.1.6 Analysis of Vibrissae Motor Performance During Exploration 9
 2.1.7 Fixation .. 10
 2.1.8 Analysis of Target Muscle Reinnervation ... 10
 2.1.9 Synaptic Input to the Facial Motoneurons ... 12
 2.1.10 Number of Retrogradely Labeled Trigeminal Ganglion Cells 16
 2.1.11 Statistics ... 17
 2.2 Second Major Set: Intensive Indirect Stimulation of the Trigeminal
 Afferents After Facial Nerve Surgery by Excision of the Contralateral
 Infraorbital Nerve .. 18
 2.2.1 Experiments to Determine the Degree of Collateral Axonal
 Branching by Application of Fluorescent Dyes on the Transected
 Superior and Inferior Buccolabial Rami of the Buccal Facial
 Branch ... 18
 2.2.2 Experiments to Determine the Accuracy of Reinnervation
 by Means of Intramuscular Injections of Fluorescent Dyes 23
 2.3 Third Major Set: Direct Stimulation of the Trigeminal and Facial
 Nerves After Facial Nerve Surgery by Massage of the Vibrissal Muscles 28
 2.3.1 Animal Groups and Overview of Experiments 28
 2.3.2 Surgery .. 33
 2.3.3 Standard Housing/Enriched Environment ... 33
 2.3.4 Mechanical Stimulation of the Vibrissal Muscles 34
 2.3.5 Handling of the Animals ... 34
 2.3.6 Analysis of Vibrissae Motor Performance During Exploration 34
 2.3.7 Analysis of the Synaptic Input to the Facial Motoneurons 34
2.3.8 Estimation of Axonal Branching by Triple Retrograde Labeling 35
2.3.9 Analysis of Target Muscle Reinnervation .. 37
2.3.10 Statistical Evaluation ... 37

2.4 Fourth Major Set: Direct Stimulation of the Trigeminal and Facial Nerves After Facial Nerve Surgery by Application of Electric Current to the Vibrissal Muscles ... 38
2.4.1 Animal Groups and Overview of Experiments 38
2.4.2 Surgical Procedures .. 38
2.4.3 Electrical Stimulation .. 39
2.4.4 Analysis of Vibrissal Motor Performance .. 40
2.4.5 Estimation of Axonal Branching by Triple Retrograde Labeling 42
2.4.6 Analysis of Target Muscle Reinnervation .. 42
2.4.7 Statistical Evaluation .. 42

3 Results .. 43
3.1 Mild Indirect Stimulation of the Trigeminal Afferents After Combined Surgery on the Infraorbital and Facial Nerves by Removal of the Contralateral Vibrissal Hairs Improves Vibrissal Function 43
3.1.1 Observations on Restoration of Vibrissal Whisking 43
3.1.2 All Three Interventions (Sensory, Mechanical, and Sensory + Mechanical Stimulation) Improved Vibrissal Function After Combined Facial and Infraorbital Nerve Injury 43
3.1.3 For All Treatments (Sensory, Mechanical, and Sensory + Mechanical Stimulation) Functional Outcome Correlates with Quality of Target Muscle Reinnervation .. 44
3.1.4 Numbers of Synaptophysin-Positive Axon Boutons in the Facial Nucleus Are Unaffected, Regardless of the Treatment ... 46
3.1.5 Neuronal Loss in the Trigeminal Ganglion After ION Lesion 47
3.2 Intensive Indirect Stimulation of the Trigeminal Afferents by Excision of the Contralateral ION Attenuates the Degree of Collateral Axonal Branching and Improves the Accuracy of Muscle Reinnervation 48
3.2.1 Reduced Degree of Collateral Axonal Branching as Determined by Application of Two Fluorescent Dyes on the Transected Superior and Inferior Buccolabial Rami of the Buccal Facial Branch 48
3.2.2 Improved Accuracy of Reinnervation as Established by Means of Intramuscular Injections of Fluorescent Dyes and Electrophysiological Measurements ... 54
3.3 Direct Stimulation of the Trigeminal and Facial Nerves by Massage of the Vibrissal Muscles Improves the Quality of Target Reinnervation and Promotes Full Recovery of Whisking Function 60
3.3.1 Analysis of Vibriessae Motor Performance During Exploration 60
3.3.2 Manual Stimulation Counteracts Posttraumatic Loss of Synaptophysin-Positive Axon Terminals in the Facial Nucleus 62
3.3.3 Degree of Collateral Axonal Branching Remains Elevated Regardless of Stimulation ... 62
3.3.4 Mechanical Stimulation Reduces the Degree of Motor End Plate Polyinnervation ... 64
3.3.5 Manually Stimulated Recovery of Motor Function After Facial Nerve Injury Requires Intact Sensory Input 64
3.4 Direct Stimulation of the Trigeminal and Facial Nerves by Electric Current to the Vibrissal Muscles Fails to Improve Quality of Target Reinnervation and Does Not Promote Recovery of Vibrissal Function 65
3.4.1 Electrical Stimulation of the Vibrissal Muscles Does Not Promote Recovery of Whisking ... 65
3.4.2 A High Degree of Collateral Axonal Branching Occurs Regardless of ES ... 65
3.4.3 ES Does Not Reduce Polyinnervation of the Motor End Plates 66
3.4.4 ES Reduces the Number of Motor End Plates 67

4 Discussion ... 69
4.1 Mild Indirect Stimulation of the Trigeminal Afferents by Removal of the Contralateral Vibrissal Hairs Has a Beneficial Effect on Motor Recovery 69
4.1.1 Importance of Sensory Fiber Regeneration for Motor Axonal Regrowth ... 69
4.1.2 Influence of Synaptic Coverage on Axonal Regrowth and Quality of Target Reinnervation ... 70
4.1.3 Clinical Application ... 71
4.2 Beneficial Effect of the Intensive Indirect Stimulation of the Trigeminal Afferents by Excision of the Contralateral Infraorbital Nerve 72
4.2.1 Removal of the Contralateral Trigeminal (ION) Input Attenuates the Degree of Collateral Axonal Branching Within the Transected Buccal Branch of the Facial Nerve ... 72
4.2.2 Observations on the Recovering Vibrissal Function 74
4.2.3 Removal of the Contralateral Trigeminal (ION) Input Improves Quality of Whisker Pad Musculature Reinnervation 76
4.3 Complete Recovery of Motor Function After Direct Stimulation of the Trigeminal and Facial Nerves by Massage of the Vibrissal Muscles 79
4.3.1 Methodological Considerations ... 79
4.3.2 Importance of the Stimulation Type ... 80
4.3.3 Possible Mechanisms of the Beneficial Effects 80
4.3.4 Adverse Effect of Trigeminal Nerve Ablation on Functional Recovery After FFA ... 85
4.3.5 The Effect of Manual Stimulation Depends on the Integrity of the Trigeminal Sensory System ... 85
4.4 Deleterious Effect of the Direct Stimulation of the Trigeminal and Facial Nerves by Application of Electric Current to the Vibrissal Muscles 86
4.4.1 Rationale to Use Electrical Stimulation for Treatment of Denervated Muscles ... 87
4.4.2 Effect of Electrical Stimulation on the Quality of Muscle Reinnervation ... 88

5 Conclusion ... 91

References ... 93

Subject Index .. 107