Contents

Part I Lock-Based Synchronization

1 The Mutual Exclusion Problem 3
 1.1 Multiprocess Program 3
 1.1.1 The Concept of a Sequential Process 3
 1.1.2 The Concept of a Multiprocess Program 4
 1.2 Process Synchronization 4
 1.2.1 Processors and Processes 4
 1.2.2 Synchronization 4
 1.2.3 Synchronization: Competition 5
 1.2.4 Synchronization: Cooperation 7
 1.2.5 The Aim of Synchronization
 Is to Preserve Invariants 7
 1.3 The Mutual Exclusion Problem 9
 1.3.1 The Mutual Exclusion Problem (Mutex) 9
 1.3.2 Lock Object 11
 1.3.3 Three Families of Solutions 12
 1.4 Summary ... 13
 1.5 Bibliographic Notes 13

2 Solving Mutual Exclusion 15
 2.1 Mutex Based on Atomic Read/Write Registers 15
 2.1.1 Atomic Register 15
 2.1.2 Mutex for Two Processes:
 An Incremental Construction 17
 2.1.3 A Two-Process Algorithm 19
 2.1.4 Mutex for \(n \) Processes:
 Generalizing the Previous Two-Process Algorithm .. 22
 2.1.5 Mutex for \(n \) Processes:
 A Tournament-Based Algorithm 26
 2.1.6 A Concurrency-Abortable Algorithm 29
2.1.7 A Fast Mutex Algorithm 33
2.1.8 Mutual Exclusion in a Synchronous System 37
2.2 Mutex Based on Specialized Hardware Primitives 38
 2.2.1 Test&Set, Swap and Compare&Swap 39
 2.2.2 From Deadlock-Freedom to Starvation-Freedom . 40
 2.2.3 Fetch&Add 44
2.3 Mutex Without Atomicity 45
 2.3.1 Safe, Regular and Atomic Registers 45
 2.3.2 The Bakery Mutex Algorithm 48
 2.3.3 A Bounded Mutex Algorithm 53
2.4 Summary ... 58
2.5 Bibliographic Notes 58
2.6 Exercises and Problems 59

3 Lock-Based Concurrent Objects 61
 3.1 Concurrent Objects 61
 3.1.1 Concurrent Object .. 61
 3.1.2 Lock-Based Implementation 62
 3.2 A Base Synchronization Object: the Semaphore 63
 3.2.1 The Concept of a Semaphore 63
 3.2.2 Using Semaphores to Solve the Producer-Consumer Problem 65
 3.2.3 Using Semaphores to Solve a Priority Scheduling Problem 71
 3.2.4 Using Semaphores to Solve the Readers-Writers Problem 74
 3.2.5 Using a Buffer to Reduce Delays for Readers and Writers 78
 3.3 A Construct for Imperative Languages: the Monitor ... 81
 3.3.1 The Concept of a Monitor 82
 3.3.2 A Rendezvous Monitor Object 83
 3.3.3 Monitors and Predicates 85
 3.3.4 Implementing a Monitor from Semaphores 87
 3.3.5 Monitors for the Readers-Writers Problem 89
 3.3.6 Scheduled Wait Operation 94
 3.4 Declarative Synchronization: Path Expressions 95
 3.4.1 Definition 96
 3.4.2 Using Path Expressions to Solve Synchronization Problems 97
 3.4.3 A Semaphore-Based Implementation of Path Expressions 98
 3.5 Summary ... 101
 3.6 Bibliographic Notes 102
 3.7 Exercises and Problems 102
Part II On the Foundations Side: The Atomicity Concept

4 Atomicity: Formal Definition and Properties 113
 4.1 Introduction ... 113
 4.2 Computation Model ... 115
 4.2.1 Processes and Operations 115
 4.2.2 Objects .. 116
 4.2.3 Histories .. 117
 4.2.4 Sequential History 119
 4.3 Atomicity ... 120
 4.3.1 Legal History .. 120
 4.3.2 The Case of Complete Histories 121
 4.3.3 The Case of Partial Histories 123
 4.4 Object Composability and Guaranteed Termination Property 125
 4.4.1 Atomic Objects Compose for Free 125
 4.4.2 Guaranteed Termination 127
 4.5 Alternatives to Atomicity 128
 4.5.1 Sequential Consistency 128
 4.5.2 Serializability 130
 4.6 Summary .. 131
 4.7 Bibliographic Notes 132

Part III Mutex-Free Synchronization

5 Mutex-Free Concurrent Objects 135
 5.1 Mutex-Freedom and Progress Conditions 135
 5.1.1 The Mutex-Freedom Notion 135
 5.1.2 Progress Conditions 137
 5.1.3 Non-blocking with Respect to Wait-Freedom 140
 5.2 Mutex-Free Concurrent Objects 140
 5.2.1 The Splitter: A Simple Wait-Free Object from Read/Write Registers 140
 5.2.2 A Simple Obstruction-Free Object from Read/Write Registers 143
 5.2.3 A Remark on Compare&Swap: The ABA Problem 145
 5.2.4 A Non-blocking Queue Based on Read/Write Registers and Compare&Swap 146
 5.2.5 A Non-blocking Stack Based on Compare&Swap Registers 150
 5.2.6 A Wait-Free Stack Based on Fetch&Add and Swap Registers 152
5.3 Boosting Obstruction-Freedom to Stronger Progress
in the Read/Write Model ... 155
5.3.1 Failure Detectors ... 155
5.3.2 Contention Managers for Obstruction-Free
Object Implementations ... 157
5.3.3 Boosting Obstruction-Freedom to Non-blocking 158
5.3.4 Boosting Obstruction-Freedom to Wait-Freedom .. 159
5.3.5 Mutex-Freedom Versus Loops Inside a Contention
Manager Operation ... 161

5.4 Summary .. 162
5.5 Bibliographic Notes ... 162
5.6 Exercises and Problems 163

6 Hybrid Concurrent Objects 165
6.1 The Notion of a Hybrid Implementation 165
6.1.1 Lock-Based Versus Mutex-Free Operation:
Static Hybrid Implementation 166
6.1.2 Contention Sensitive (or Dynamic Hybrid)
Implementation ... 166
6.1.3 The Case of Process Crashes 166
6.2 A Static Hybrid Implementation of a Concurrent Set Object ... 167
6.2.1 Definition and Assumptions 167
6.2.2 Internal Representation and Operation
Implementation .. 167
6.2.3 Properties of the Implementation 171
6.3 Contention-Sensitive Implementations 172
6.3.1 Contention-Sensitive Binary Consensus 172
6.3.2 A Contention Sensitive Non-blocking
Double-Ended Queue ... 176
6.4 The Notion of an Abortable Object 181
6.4.1 Concurrency-Abortable Object 181
6.4.2 From a Non-blocking Abortable Object
to a Starvation-Free Object 183
6.5 Summary .. 186
6.6 Bibliographic Notes ... 186
6.7 Exercises and Problems 187

7 Wait-Free Objects from Read/Write Registers Only 189
7.1 A Wait-Free Weak Counter for Infinitely Many Processes .. 189
7.1.1 A Simple Counter Object 190
7.1.2 Weak Counter Object for Infinitely Many Processes .. 191
7.1.3 A One-Shot Weak Counter Wait-Free Algorithm 193
7.1.4 Proof of the One-Shot Implementation 194
7.1.5 A Multi-Shot Weak Counter Wait-Free Algorithm ... 199
7.2 Store-Collect Object .. 201
 7.2.1 Store-Collect Object: Definition 201
 7.2.2 An Adaptive Store-Collect Implementation 204
 7.2.3 Proof and Cost of the Adaptive Implementation 208
7.3 Fast Store-Collect Object .. 211
 7.3.1 Fast Store-Collect Object: Definition 211
 7.3.2 A Fast Algorithm for the store_collect() Operation 212
 7.3.3 Proof of the Fast Store-Collect Algorithm 215
7.4 Summary ... 217
7.5 Bibliographic Notes ... 217
7.6 Problem ... 218

8 Snapshot Objects from Read/Write Registers Only 219
 8.1 Snapshot Objects: Definition 219
 8.2 Single-Writer Snapshot Object 220
 8.2.1 An Obstruction-Free Implementation 221
 8.2.2 From Obstruction-Freedom to Bounded Wait-Freedom 223
 8.2.3 One-Shot Single-Writer Snapshot Object: Containment Property 227
 8.3 Single-Writer Snapshot Object with Infinitely Many Processes 228
 8.4 Multi-Writer Snapshot Object 230
 8.4.1 The Strong Freshness Property 231
 8.4.2 An Implementation of a Multi-Writer Snapshot Object 231
 8.4.3 Proof of the Implementation 234
 8.5 Immediate Snapshot Objects 238
 8.5.1 One-Shot Immediate Snapshot Object: Definition 238
 8.5.2 One-Shot Immediate Snapshot Versus One-Shot Snapshot 238
 8.5.3 An Implementation of One-Shot Immediate Snapshot Objects 240
 8.5.4 A Recursive Implementation of a One-Shot Immediate Snapshot Object 244
 8.6 Summary ... 247
 8.7 Bibliographic Notes ... 247
 8.8 Problem ... 248
9 Renaming Objects from Read/Write Registers Only 249
 9.1 Renaming Objects .. 249
 9.1.1 The Base Renaming Problem 249
 9.1.2 One-Shot Renaming Object 250
 9.1.3 Adaptive Implementations 250
 9.1.4 A Fundamental Result 251
 9.1.5 Long-Lived Renaming 252
 9.2 Non-triviality of the Renaming Problem 252
 9.3 A Splitter-Based Optimal Time-Adaptive Implementation 254
 9.4 A Snapshot-Based Optimal Size-Adaptive Implementation 256
 9.4.1 A Snapshot-Based Implementation 256
 9.4.2 Proof of the Implementation 258
 9.5 Recursive Store-Collect-Based Size-Adaptive Implementation 259
 9.5.1 A Recursive Renaming Algorithm 259
 9.5.2 An Example ... 262
 9.5.3 Proof of the Renaming Implementation 263
 9.6 Variant of the Previous Recursion-Based Renaming Algorithm 266
 9.6.1 A Renaming Implementation Based on Immediate Snapshot Objects 266
 9.6.2 An Example of a Renaming Execution 268
 9.7 Long-Lived Perfect Renaming Based on Test&Set Registers 269
 9.7.1 Perfect Adaptive Renaming 269
 9.7.2 Perfect Long-Lived Test&Set-Based Renaming 270
 9.8 Summary ... 271
 9.9 Bibliographic Notes .. 271
 9.10 Exercises and Problems .. 272

Part IV The Transactional Memory Approach

10 Transactional Memory .. 277
 10.1 What Are Software Transactional Memories 277
 10.1.1 Transactions = High-Level Synchronization 277
 10.1.2 At the Programming Level 279
 10.2 STM System ... 281
 10.2.1 Speculative Executions, Commit and Abort of a Transaction 281
 10.2.2 An STM Consistency Condition: Opacity 282
 10.2.3 An STM Interface .. 282
 10.2.4 Incremental Reads and Deferred Updates 283
10.2.5 Read-Only Versus Update Transactions 283
10.2.6 Read Invisibility .. 284
10.3 A Logical Clock-Based STM System: TL2 284
10.3.1 Underlying System and Control Variables
of the STM System ... 284
10.3.2 Underlying Principle: Consistency
with Respect to Transaction Birth Date 285
10.3.3 The Implementation of an Update Transaction 286
10.3.4 The Implementation of a Read-Only Transaction ... 288
10.4 A Version-Based STM System: JVSTM 289
10.4.1 Underlying and Control Variables
of the STM System ... 290
10.4.2 The Implementation of an Update Transaction 291
10.4.3 The Implementation of a Read-Only Transaction ... 293
10.5 A Vector Clock-Based STM System 293
10.5.1 The Virtual World Consistency Condition 293
10.5.2 An STM System for Virtual World Consistency ... 295
10.5.3 The Algorithms Implementing
the STM Operations ... 296
10.6 Summary .. 299
10.7 Bibliographic Notes .. 299
10.8 Exercises and Problems .. 300

Part V On the Foundations Side:
From Safe Bits to Atomic Registers

11 Safe, Regular, and Atomic Read/Write Registers 305
11.1 Safe, Regular, and Atomic Registers 305
11.1.1 Reminder: The Many Faces of a Register 305
11.1.2 From Regularity to Atomicity: A Theorem 308
11.1.3 A Fundamental Problem:
The Construction of Registers 310
11.2 Two Very Simple Bounded Constructions 311
11.2.1 Safe/Regular Registers:
From Single-Reader to Multi-Reader 311
11.2.2 Binary Multi-Reader Registers:
From Safe to Regular .. 313
11.3 From Bits to b-Valued Registers 314
11.3.1 From Safe Bits to b-Valued Safe Registers 314
11.3.2 From Regular Bits to Regular b-Valued Registers ... 315
11.3.3 From Atomic Bits to Atomic b-Valued Registers 319
11.4 Three Unbounded Constructions 321
11.4.1 SWSR Registers: From Unbounded Regular to Atomic. 322
11.4.2 Atomic Registers: From Unbounded SWSR to SWMR 324
11.4.3 Atomic Registers: From Unbounded SWMR to MWMR 325
11.5 Summary ... 327
11.6 Bibliographic Notes 327

12 From Safe Bits to Atomic Bits:
Lower Bound and Optimal Construction 329
12.1 A Lower Bound Theorem 329
12.1.1 Two Preliminary Lemmas 330
12.1.2 The Lower Bound Theorem 331
12.2 A Construction of an Atomic Bit from Three Safe Bits 334
12.2.1 Base Architecture of the Construction 334
12.2.2 Underlying Principle and Signaling Scheme 335
12.2.3 The Algorithm Implementing the Operation R.write() 336
12.2.4 The Algorithm Implementing the Operation R.read() 336
12.2.5 Cost of the Construction 338
12.3 Proof of the Construction of an Atomic Bit 338
12.3.1 A Preliminary Theorem 338
12.3.2 Proof of the Construction 340
12.4 Summary ... 344
12.5 Bibliographic Notes 345
12.6 Exercise .. 345

13 Bounded Constructions of Atomic b-Valued Registers 347
13.1 Introduction ... 347
13.2 A Collision-Free (Pure Buffers) Construction 349
13.2.1 Internal Representation of the Atomic b-Valued Register R 349
13.2.2 Underlying Principle: Two-Level Switch to Ensure Collision-Free Accesses to Buffers 349
13.2.3 The Algorithms Implementing the Operations R.write() and R.read() 350
13.2.4 Proof of the Construction: Collision-Freedom 352
13.2.5 Correctness Proof 355
13.3 A Construction Based on Impure Buffers 357
13.3.1 Internal Representation of the Atomic b-Valued Register R 357
13.3.2 An Incremental Construction 358
13.3.3 The Algorithms Implementing the Operations $R.write()$ and $R.read()$ 360
13.3.4 Proof of the Construction 360
13.3.5 From SWSR to SWMR b-Valued Atomic Register .. 367
13.4 Summary .. 368
13.5 Bibliographic Notes 368

Part VI On the Foundations Side:
The Computability Power of Concurrent Objects (Consensus)

14 Universality of Consensus 371
14.1 Universal Object, Universal Construction, and Consensus Object 371
14.1.1 Universal (Synchronization) Object and Universal Construction 371
14.1.2 The Notion of a Consensus Object 372
14.2 Inputs and Base Principles of Universal Constructions 373
14.2.1 The Specification of the Constructed Object .. 373
14.2.2 Base Principles of Universal Constructions 374
14.3 An Unbounded Wait-Free Universal Construction 374
14.3.1 Principles and Description of the Construction 375
14.3.2 Proof of the Construction .. 378
14.3.3 Non-deterministic Objects ... 382
14.3.4 Wait-Freedom Versus Bounded Wait-Freedom 383
14.4 A Bounded Wait-Free Universal Construction 384
14.4.1 Principles of the Construction .. 384
14.4.2 Proof of the Construction .. 388
14.4.3 Non-deterministic Objects .. 391
14.5 From Binary Consensus to Multi-Valued Consensus 391
14.5.1 A Construction Based on the Bit Representation of Proposed Values 392
14.5.2 A Construction for Unbounded Proposed Values 394
14.6 Summary .. 395
14.7 Bibliographic Notes 396
14.8 Exercises and Problems 396

15 The Case of Unreliable Base Objects 399
15.1 Responsive Versus Non-responsive Crash Failures 400
15.2 SWSR Registers Prone to Crash Failures ... 400
15.2.1 Reliable Register When Crash Failures Are Responsive: An Unbounded Construction .. 401
15.2.2 Reliable Register When Crash Failures Are Responsive: A Bounded Construction 403
15.2.3 Reliable Register When Crash Failures Are Not Responsive: An Unbounded Construction 406

15.3 Consensus When Crash Failures Are Responsive: A Bounded Construction 408
15.3.1 The “Parallel Invocation” Approach Does Not Work 408
15.3.2 A \(t \)-Tolerant Wait-Free Construction 409
15.3.3 Consensus When Crash Failures Are Not Responsive: An Impossibility 410

15.4 Omission and Arbitrary Failures 410
15.4.1 Object Failure Modes 410
15.4.2 Simple Examples 412
15.4.3 Graceful Degradation 413
15.4.4 Fault-Tolerance Versus Graceful Degradation 417

15.5 Summary 418
15.6 Bibliographic Notes 419
15.7 Exercises and Problems 419

16 Consensus Numbers and the Consensus Hierarchy 421
16.1 The Consensus Number Notion 421
16.2 Fundamentals 422
16.2.1 Schedule, Configuration, and Valence 422
16.2.2 Bivalent Initial Configuration 423
16.3 The Weak Wait-Free Power of Atomic Registers 425
16.3.1 The Consensus Number of Atomic Read/Write Registers Is 1 425
16.3.2 The Wait-Free Limit of Atomic Registers 428
16.4 Objects Whose Consensus Number Is 2 429
16.4.1 Consensus from Test&Set Objects 429
16.4.2 Consensus from Queue Objects 431
16.4.3 Consensus from Swap Objects 432
16.4.4 Other Objects for Wait-Free Consensus in a System of Two Processes 432
16.4.5 Power and Limit of the Previous Objects 433
16.5 Objects Whose Consensus Number Is \(+\infty \) 438
16.5.1 Consensus from Compare&Swap Objects 439
16.5.2 Consensus from Mem-to-Mem-Swap Objects 440
16.5.3 Consensus from an Augmented Queue 442
16.5.4 From a Sticky Bit to Binary Consensus 442
16.5.5 Impossibility Result 443
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.6</td>
<td>Hierarchy of Atomic Objects</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>16.6.1 From Consensus Numbers to a Hierarchy</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>16.6.2 On Fault Masking</td>
<td>444</td>
</tr>
<tr>
<td></td>
<td>16.6.3 Robustness of the Hierarchy</td>
<td>445</td>
</tr>
<tr>
<td>16.7</td>
<td>Summary</td>
<td>445</td>
</tr>
<tr>
<td>16.8</td>
<td>Bibliographic Notes</td>
<td>445</td>
</tr>
<tr>
<td>16.9</td>
<td>Exercises and Problems</td>
<td>446</td>
</tr>
<tr>
<td>17</td>
<td>The Alpha(s) and Omega of Consensus: Failure Detector-Based Consensus</td>
<td>449</td>
</tr>
<tr>
<td>17.1</td>
<td>De-constructing Compare&Swap</td>
<td>450</td>
</tr>
<tr>
<td>17.2</td>
<td>A Liveness-Oriented Abstraction: The Failure Detector Ω</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>17.2.1 Definition of Ω</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>17.2.2 Ω-Based Consensus: Ω as a Resource</td>
<td>453</td>
</tr>
<tr>
<td>17.3</td>
<td>Three Safety-Oriented Abstractions: α_1, α_2, and α_3</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>17.3.1 A Round-Free Abstraction: α_1</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>17.3.2 A Round-Based Abstraction: α_2</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>17.3.3 Another Round-Free Abstraction: α_3</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>17.3.4 The Rounds Seen as a Resource</td>
<td>457</td>
</tr>
<tr>
<td>17.4</td>
<td>Ω-Based Consensus</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>17.4.1 Consensus from α_1 Objects and Ω</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>17.4.2 Consensus from an α_2 Object and Ω</td>
<td>459</td>
</tr>
<tr>
<td></td>
<td>17.4.3 Consensus from an α_3 Object and Ω</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>17.4.4 When the Eventual Leader Elected by Ω Does Not Participate</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>17.4.5 The Notion of an Indulgent Algorithm</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>17.4.6 Consensus Object Versus Ω</td>
<td>464</td>
</tr>
<tr>
<td>17.5</td>
<td>Wait-Free Implementations of the α_1 and α_2 Abstractions</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>17.5.1 α_1 from Atomic Registers</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>17.5.2 α_2 from Regular Registers</td>
<td>467</td>
</tr>
<tr>
<td>17.6</td>
<td>Wait-Free Implementations of the α_2 Abstraction from Shared Disks</td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>17.6.1 α_2 from Unreliable Read/Write Disks</td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>17.6.2 α_2 from Active Disks</td>
<td>476</td>
</tr>
<tr>
<td>17.7</td>
<td>Implementing Ω</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td>17.7.1 The Additional Timing Assumption EWB</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td>17.7.2 An EWB-Based Implementation of Ω</td>
<td>479</td>
</tr>
<tr>
<td></td>
<td>17.7.3 Proof of the Construction</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>17.7.4 Discussion</td>
<td>484</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>17.8 Summary</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td>17.9 Bibliographic Notes</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td>17.10 Exercises and Problems</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td>Afterword</td>
<td>489</td>
<td></td>
</tr>
<tr>
<td>Bibliography</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>509</td>
<td></td>
</tr>
</tbody>
</table>