Optical Coherence Tomography
Technology and Applications

von
Wolfgang Drexler, James G. Fujimoto

1. Auflage

Optical Coherence Tomography – Drexler / Fujimoto
schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG

Thematische Gliederung:
Augenheilkunde, Optometrie

Springer-Verlag Berlin Heidelberg 2013

Verlag C.H. Beck im Internet:
www.beck.de
ISBN 978 3 642 27643 9
Contents

1 Introduction to Optical Coherence Tomography
J. Fujimoto and W. Drexler
1.1 Introduction .. 1
1.2 OCT and Other Imaging Technologies 2
1.3 Measuring Optical Echoes
 1.3.1 Photographing Light in Flight 5
 1.3.2 Femtosecond Time Domain Measurement 6
 1.3.3 Low-Coherence Interferometry 7
1.4 Early OCT Imaging 9
1.5 Early OCT Technology and Systems 13
 1.5.1 Ophthalmic OCT Imaging 15
 1.5.2 Catheter and Endoscopic OCT Imaging 19
1.6 Advances in Image Resolution
 1.6.1 Factors Governing Resolution and Depth of Field 23
 1.6.2 Light Sources for Ultrahigh Resolution OCT 26
1.7 Advances in Imaging Speed
 1.7.1 Spectral/Fourier Domain Detection 31
 1.7.2 Swept Source/Fourier Domain Detection 35
1.8 Conclusion ... 38

References ... 40

2 Theory of Optical Coherence Tomography
J.A. Izatt and M.A. Choma
2.1 Introduction .. 47
2.2 Confocal Gating and Lateral Resolution in OCT Systems 49
2.3 Axial Ranging with Low-Coherence Interferometry 51
2.4 Fourier Domain Low Coherence Interferometry 56
2.5 Time Domain Low Coherence Interferometry 59
2.6 Practical Aspects of FDOCT Signal Processing 60
 2.6.1 Sensitivity Falloff and Sampling Effects in FDOCT 60
 2.6.2 Artifact Removal in FDOCT by Phase Shifting 63
3 Modeling Light–Tissue Interaction in Optical Coherence Tomography Systems
P.E. Andersen, T.M. Jørgensen, L. Thrane, A. Tycho, and H.T. Yura

3.1 Introduction .. 73
3.1.1 Modeling Light–Tissue Interactions Relevant to OCT . 74
3.1.2 Organization of this Chapter 76
3.2 Analytical OCT Model Based on the Extended Huygens–Fresnel Principle 77
3.2.1 The Extended Huygens–Fresnel Principle 77
3.2.2 Calculating the OCT Signal: Time-Domain 78
3.3 Doppler OCT Analysis 89
3.3.1 Multiple Scattering Effects in ODT 89
3.4 Advanced Monte Carlo Simulation of OCT Systems . . . 92
3.4.1 Theoretical Considerations 93
3.4.2 Monte Carlo Simulation of the OCT Signal 96
3.4.3 Validation .. 98
3.5 Applications of Modeling in OCT 102
3.5.1 Extracting Optical Scattering Properties from a MC-Simulated Heterogeneous Multilayered Sample .. 103
3.5.2 Extraction of Optical Scattering Properties from Tissues .. 105
3.6 Summary .. 107
Appendix .. 108
References ... 113

Part I Optical Coherence Tomography Technology

4 Inverse Scattering, Dispersion, and Speckle in Optical Coherence Tomography
A.F. Fercher ... 119
4.1 Inverse Scattering and Backscattering 119
4.1.1 Inversion of Forward and Backward Scattering Data ... 119
4.1.2 Use of Backscattered Field Data in PCI and OCT 122
4.1.3 Measurement of Amplitudes and Phases in ODT, Fourier PCI, and OCT 124
4.2 Dispersion in OCT .. 129
4.2.1 Impact of Sample Dispersion on the Low Coherence Interferogram Signal 129
4.2.2 Dispersion Compensation in OCT 132
5 Spectral/Fourier Domain Optical Coherence Tomography

J.F. de Boer ... 147

5.1 Introduction .. 147

5.2 Introduction to Signal to Noise 147

5.2.1 Noise Analysis of SD-OCT Using Charge-Coupled Devices (CCDs) 148

5.3 Autocorrelation Noise: Dynamic Range and Digitization Depth ... 150

5.3.1 Bit Resolution and Well Depth of the CCD, Dynamic Range, and Sensitivity 151

5.4 Experimental Demonstration of SNR Advantage 152

5.4.1 Shot-Noise-Limited Detection 154

5.5 Remapping to k-Space; Sensitivity Drop Off as a Function of Depth; Spectrometer Resolution, Fixed Pattern Noise Removal 155

5.6 Dispersion Compensation 158

5.6.1 Fixed Pattern Noise Removal 161

5.6.2 Postprocessing .. 163

5.6.3 Depth-Dependent Sensitivity 163

5.7 Motion Artifacts and Fringe Washout 166

5.7.1 The Effect of Pulsed Illumination on RIN Noise 168

5.7.2 Phase Stability and Doppler 169

5.8 Retinal Imaging with SD-OCT 171

5.9 Conclusion .. 173

References ... 173

6 Complex and Coherence Noise Free Fourier Domain Optical Coherence Tomography

R.A. Leitgeb and M. Wojtkowski 177

6.1 Introduction ... 177

6.2 Complex OCT Signal .. 178

6.2.1 Phase Noise .. 181

6.2.2 Fringe Wash-Out .. 184

6.2.3 Phase Sensitive Detection 185

6.3 Coherence Noise-Free Imaging with Fourier Domain OCT 190

6.3.1 Coherence Noise Terms 190

6.3.2 Background Subtraction 191
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.3</td>
<td>Physical Separation of the Coherence Noise Terms</td>
<td>192</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Optical Power Optimization</td>
<td>193</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Differential FdOCT Technique</td>
<td>196</td>
</tr>
<tr>
<td>6.4</td>
<td>Complex Fourier Domain Optical Coherence Tomography</td>
<td>197</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Phase Shifting Techniques: N-frames</td>
<td>199</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Ghosts Cleaning Algorithms</td>
<td>200</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Complex Two-Frame Technique</td>
<td>200</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Heterodyne Fourier Domain OCT Techniques</td>
<td>203</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary</td>
<td>205</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>205</td>
</tr>
</tbody>
</table>

7 Optical Frequency Domain Imaging

B.E. Bouma, G.J. Tearney, B.J. Vakoc, and S.H. Yun 209

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>209</td>
</tr>
<tr>
<td>7.2</td>
<td>Principles of Operation</td>
<td>210</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Frequency Domain Signal</td>
<td>210</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Detection Sensitivity</td>
<td>211</td>
</tr>
<tr>
<td>7.3</td>
<td>Instrumentation</td>
<td>214</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Light Source and Interferometer</td>
<td>214</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Sampling and Data Processing</td>
<td>216</td>
</tr>
<tr>
<td>7.4</td>
<td>Motion Artifacts</td>
<td>217</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Axial Motion</td>
<td>218</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Transverse Motion</td>
<td>220</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Nonlinear Tuning Slope</td>
<td>222</td>
</tr>
<tr>
<td>7.5</td>
<td>Phase-Sensitive (Doppler) OFDI</td>
<td>223</td>
</tr>
<tr>
<td>7.6</td>
<td>Applications</td>
<td>232</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Gastrointestinal Tract Imaging In Vivo</td>
<td>232</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Intracoronary Imaging In Vivo</td>
<td>234</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Four-Dimensional Imaging of an Embryo Heart</td>
<td>235</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>236</td>
</tr>
</tbody>
</table>

8 Ultrahigh Resolution Optical Coherence Tomography

W. Drexler, Y. Chen, A. Aguirre, B. Považay, A. Unterhuber, and J.G. Fujimoto 239

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Longitudinal and Transverse Resolution in OCT</td>
<td>239</td>
</tr>
<tr>
<td>8.2</td>
<td>Axial Resolution Limits for OCT</td>
<td>242</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Group Velocity Dispersion Limitations to Resolution</td>
<td>242</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Dispersion and Resolution in FD OCT</td>
<td>246</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Spectral Shape of Ultrabroad Bandwidth Light Sources</td>
<td>247</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Chromatic Aberration Limitations to Resolution</td>
<td>248</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Other Limitations to Resolution</td>
<td>248</td>
</tr>
<tr>
<td>8.3</td>
<td>Ultrahigh Resolution OCT at 800 nm</td>
<td>250</td>
</tr>
<tr>
<td>8.4</td>
<td>Ultrahigh Resolution OCT at 1,300 nm</td>
<td>263</td>
</tr>
<tr>
<td>8.5</td>
<td>Ultrahigh Resolution OCT at 1,050 nm</td>
<td>270</td>
</tr>
<tr>
<td>8.6</td>
<td>Ultrahigh Resolution OCT in the Visible Wavelength Region</td>
<td>271</td>
</tr>
</tbody>
</table>
9 Superluminescent Diode Light Sources for OCT
V.R. Shidlovski ... 281
9.1 Main Principles of SLD Operation and SLD Spectrum Broadening 282
9.2 Reported SLD Performance Parameters ... 287
 9.2.1 AlGaInP SLDs at 680 nm ... 287
 9.2.2 AlGaAs SLDs at 780–870 nm Band 287
 9.2.3 InGaAs SLDs at 920–1060 nm Spectral Band 287
 9.2.4 InGaAsP/InP SLDs at 1300–1600 nm Spectral Band 289
9.3 SLD Based Broadband and Powerful Lightsources 291
9.4 SLDs and Optical Feedback. Important Aspects of SLDs Use in Practice 294
9.5 Conclusions ... 297
References ... 298

10 Broad Bandwidth Laser and Nonlinear Optical Light Sources for OCT
A. Unterhuber, B. Považay, A. Aguirre, Y. Chen, F.X. Kärntner, J.G. Fujimoto, and W. Drexler .. 301
10.1 Solid-State Lasers .. 302
 10.1.1 Transition-Metal-Doped Materials .. 303
 10.1.2 Femtosecond Lasers .. 304
 10.1.3 Mode Locking .. 305
 10.1.4 Resonator Design ... 306
10.2 Ti:Sapphire Laser Development ... 311
 10.2.1 Mirror Technology for Femtosecond Pulse Ti:Sapphire Lasers 312
 10.2.2 Ultrabroad Bandwidth Ti:Sapphire ... 315
 10.2.3 Low Pump-Power Broad Bandwidth Laser Sources 322
10.3 Cr³⁺:LiCAF Laser Development .. 329
10.4 Cr⁴⁺/Forsterite Laser Development .. 331
10.5 Cr⁴⁺:YAG Laser Development ... 334
10.6 Supercontinuum Light Source Development 336
 10.6.1 Microstructured Fibers ... 336
 10.6.2 Spectral Broadening in the Visible 342
 10.6.3 Simultaneous Spectral Broadening in the Visible and NIR 343
 10.6.4 Spectral Broadening in the NIR .. 347
10.7 Conclusion .. 352
References ... 355
11 Wavelength Swept Lasers
S.H. Yun and B.E. Bouma 359
11.1 Introduction .. 359
11.2 General Requirements 360
11.3 Fundamentals ... 363
11.3.1 Gain Medium 364
11.3.2 Semiconductor Optical Amplifier (SOA) 364
11.3.3 Laser Cavity ... 365
11.3.4 Tunable Laser .. 366
11.3.5 Sweep Operation 367
11.4 Techniques ... 369
11.4.1 Scanning Filters 369
11.4.2 Resonant Sweep 371
11.4.3 Sliding Frequency Mode-Locking 374
11.4.4 Stretched Chirped Pulses 374
11.4.5 Wavelength Conversion 375
11.5 Outlook ... 376
References ... 377

12 Optical Design for OCT
Z. Hu and A.M. Rollins .. 379
12.1 Optical Design Considerations for OCT 379
12.1.1 Unique Optical Design Needs for OCT 379
12.1.2 Sample Scanners 380
12.1.3 Scanning ODLs 382
12.1.4 Spectrometers 383
12.2 Some Key Optical Design Principles for OCT 384
12.2.1 Telecentric Optics 384
12.2.2 Aspheric Optics 384
12.2.3 Achromatic Optics 386
12.3 Scanning ODL Design Example 387
12.4 OCT Scanner Design Examples 393
12.4.1 Overview of OCT Scanners 393
12.4.2 Design Example: Bench-Top Scanner 393
12.4.3 Design Example: Catheter Probe 397
12.5 FD-OCT Spectrometer Design Example 400
12.5.1 Achromatic Spectral Response 400
12.5.2 Optical Resolution and Detector Array Resolution ... 401
References ... 404

13 Data Analysis and Signal Postprocessing
for Optical Coherence Tomography
D.L. Marks, T.S. Ralston, and S.A. Boppart 405
13.1 Introduction ... 405
13.2 Signal Improvement by Averaging or Compounding 407

<table>
<thead>
<tr>
<th>Contents</th>
<th>XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>Deconvolution and Spectral Shaping</td>
</tr>
<tr>
<td>13.4</td>
<td>Speckle Reduction</td>
</tr>
<tr>
<td>13.5</td>
<td>Dispersion Correction</td>
</tr>
<tr>
<td>13.6</td>
<td>Refraction Correction</td>
</tr>
<tr>
<td>13.7</td>
<td>Image Representation and Coloring</td>
</tr>
<tr>
<td>13.8</td>
<td>Synthetic Aperture Imaging for Microscopy</td>
</tr>
<tr>
<td>13.9</td>
<td>Conclusions</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

Part II En Face Optical Coherence Tomography and Optical Coherence Microscopy

14 Linear OCT

G. H"uttmann, P. Koch, and R. Birngruber | 429 |

14.1 Introduction | 429 |
14.2 Theory
 14.2.1 The Principle of Linear OCT | 430 |
 14.2.2 Optical Control of the Carrier Frequency | 432 |
 14.2.3 Sensitivity and Signal-to-Noise Ratio | 435 |
14.3 Detectors for Linear OCT | 436 |
 14.3.1 Systematical Errors and Detector Noise | 437 |
 14.3.2 Spatial Resolution and MTF | 438 |
 14.3.3 Practical Considerations and Choice of the Detector | 439 |
 14.3.4 Signal Processing | 440 |
14.4 Examples of L-OCT Systems | 441 |
14.5 Conclusion | 444 |
References | 444 |

15 En-Face Flying Spot OCT/Ophthalmoscope

15.1 Introduction | 447 |
15.2 Different Scanning Procedures | 447 |
 15.2.1 Flying Spot En-Face (T-Scan) OCT | 447 |
 15.2.2 A-Scan-Based B-Scan | 447 |
 15.2.3 T-Scan-Based B-Scan | 448 |
 15.2.4 C-Scan | 449 |
15.3 Simultaneous En-Face OCT and Confocal Imaging | 449 |
 15.3.1 OCT/SLO | 450 |
 15.3.2 En-Face Scanning Allows High Transversal Resolution | 451 |
 15.3.3 Synergy Between the Channels | 452 |
 15.3.4 3D Imaging | 453 |
17.6 Technology for OCM 522
 17.6.1 Broadband Light Sources 523
 17.6.2 Modulation Schemes 524
 17.6.3 Microscope Scanner Designs 527
 17.6.4 Controlling the Overlap of Coherence
 and Confocal Gating 530
 17.6.5 Combination Microscopy Techniques 532
17.7 Cellular Imaging Applications of OCM 532
17.8 Summary and Future Prospects 537
References .. 538

18 Combined MPM/OCT System
and Second Harmonic OCT
Z. Chen and S. Tang .. 543
18.1 Introduction .. 543
18.2 Combined MPM/OCT System 544
 18.2.1 Principles of MPM/OCT 545
 18.2.2 Applications of the Combined MPM/OCT System 551
18.3 Second Harmonic OCT 554
 18.3.1 Time-Domain SH-OCT 556
 18.3.2 Fourier-Domain SH-OCT 558
18.4 Summary .. 561
References .. 561

19 Full-Field Optical Coherence Tomography
A. Dubois and A.C. Boccara 565
19.1 Introduction .. 565
19.2 The Full-Field OCT Technique 566
 19.2.1 Experimental Arrangement 566
 19.2.2 Principle of Operation 567
 19.2.3 Image Processing and Display 569
19.3 Performances of Full-Field OCT 569
 19.3.1 Transverse Resolution 569
 19.3.2 Axial Resolution 570
 19.3.3 Detection Sensitivity 571
 19.3.4 Advantages and Drawbacks of Parallel Acquisition . 573
19.4 A Tool for Noninvasive Histology 574
 19.4.1 Applications in Embryology and Developmental
 Biology ... 574
 19.4.2 Applications in Ophthalmology 576
19.5 Spectroscopic Full-Field OCT 577
 19.5.1 Introduction ... 577
 19.5.2 Experimental Setup 578
 19.5.3 Intensity-Based Imaging Mode 578
 19.5.4 Spectroscopic Information Extraction 579
XVIII Contents

19.5.5 Spectroscopic Biomedical Imaging 579
19.6 Full-Field OCT in the 1.2-µm Wavelength Region 580
 19.6.1 Increasing the Wavelength for Deeper Penetration 580
 19.6.2 Imaging Without Immersion Medium 581
 19.6.3 Performances .. 582
19.7 Ultra-Fast Full-Field OCT 584
 19.7.1 Experimental Setup 584
 19.7.2 The Highest Speed Ever Achieved in OCT 586
19.8 Conclusion ... 587
References ... 588

20 Holographic Optical Coherence Imaging
D.D. Nolte, K. Jeong, P.M.W. French, and J. Turek 593
20.1 Introduction ... 593
20.2 Development and Applications of Holographic OCI 594
20.3 System Architecture and Performance 596
 20.3.1 Speckle Holography and Spatial Heterodyne 596
 20.3.2 Photorefractive Quantum Well Devices and Films 597
 20.3.3 Image-Domain vs. Spatial Fourier-Domain OCI 599
20.4 Multicellular Tumor Spheroids 601
 20.4.1 Growth and Uses of Tumor Spheroids 601
 20.4.2 Optical Properties of Tumor Spheroids 602
20.6 Functional Imaging ... 610
References ... 615

Part III Optical Coherence Tomography Extensions

21 Doppler Optical Coherence Tomography
Z. Chen and J. Zhang .. 621
21.1 Introduction ... 621
21.2 Principles of Doppler OCT 623
 21.2.1 Time Domain Doppler OCT Based on Spectrogram Method 627
 21.2.2 Phase-Resolved Doppler OCT Method 628
 21.2.3 Fourier Domain Phase-Resolved Doppler OCT Method 631
 21.2.4 Transverse Flow Velocity and Doppler Angle Determination 634
 21.2.5 Quantification of Three-Dimensional Velocity Vector 635
21.3 Applications of Doppler OCT 638
 21.3.1 Drug Screening .. 638
 21.3.2 In Vivo Blood Flow Monitoring During Photodynamic Therapy (PDT) 639
25 Ultrasensitive Phase-Resolved Imaging of Cellular Morphology and Dynamics
M.A. Choma, A. Ellerbee, and J.A. Izatt

25.1 Introduction

25.1.1 Phase Contrast Microscopy

25.1.2 Definition of Interferometric Phase

25.2 Review of Prior Techniques

25.2.1 Monochromatic Interferometric Techniques

25.2.2 Broadband Time Domain Techniques

25.3 Theoretical Limits to Phase Stability in Interferometry

25.3.1 Phase and Doppler Sensitivity of Spectral Domain OCT

25.4 SDPM Imaging Systems: Design, Characterization, and Validation

25.5 Applications in Cell Biology

25.5.1 Characterizing Cardiomyocyte Contractility

25.5.2 Characterizing Cytoplasmic Flow in an Individual Cell

25.5.3 Characterizing Mechanical Properties of the Cytoskeleton Using Magnetic Tweezers and SDPM

25.5.4 Whole-cell Imaging Using SDPM

25.6 Conclusion

References

26 Combined Endoscopic Optical Coherence Tomography and Laser Induced Fluorescence
J.K. Barton, A.R. Tumlinson, and U. Utzinger

26.1 Introduction

26.2 Background on Optical Coherence Tomography

26.2.1 Diagnostic accuracy of Optical Coherence Tomography

26.3 Background on Laser Induced Fluorescence

26.3.1 Fluorophores

26.3.2 Diagnostic Accuracy of Laser Induced Fluorescence

26.4 Advantages of a Dual Modality System

26.5 Instrumentation Design Considerations

26.5.1 OCT and LIF systems
XXII Contents

28.3 Monte Carlo Simulations 864
28.4 Enhancement of Light Transmittance 869
28.5 Enhancement of OCT Imaging Capabilities 871
28.6 OCT Glucose Sensing 876
28.7 Imaging Through Blood 878
28.8 Summary .. 882
References .. 883

Part IV Optical Coherence Tomography Applications

29 Optical Coherence Tomography in Tissue Engineering
S.A. Boppart, Y. Yang, and R.K. Wang 889
29.1 Introduction to Tissue Engineering 889
 29.1.1 Cells ... 890
 29.1.2 Scaffold .. 891
 29.1.3 Bioreactor (Culture Environment) 891
29.2 Current Imaging and Monitoring Techniques 892
 29.2.1 Light Microscopy and Histology 892
 29.2.2 Confocal and Two-Photon Microscopy 893
 29.2.3 Micro-Computed Tomography 894
29.3 OCT as an Investigative Tool for Tissue Engineering ... 894
 29.3.1 Technological Aspects Relevant to Tissue Engineering . 895
 29.3.2 Scaffold and Substrate 898
 29.3.3 Cell Growth Profiles 899
 29.3.4 Single Cell Identification and Differentiation 903
 29.3.5 Imaging Under Static and Dynamic Growth Conditions .. 907
 29.3.6 Dynamic Cellular Processes 908
29.4 Integrated Imaging Methods 912
29.5 Summary .. 915
References .. 915

30 OCT Applications in Developmental Biology
A.M. Davis, S.A. Boppart, F. Rothenberg, and J.A. Izatt 919
30.1 Introduction .. 919
30.2 Animal Models ... 919
30.3 Other Imaging Technologies 920
30.4 OCT Imaging Technology Considerations 922
 30.4.1 OCT System Requirements for Developmental Biology Studies ... 922
 30.4.2 OCT System Design for Small Animal Imaging .. 925
 30.4.3 Doppler Imaging 927
 30.4.4 Birefringence Imaging 930
 30.4.5 Molecular Contrast Imaging 932
33 Optical Coherence Tomography for Gastrointestinal Endoscopy
X. Qi, M.V. Sivak Jr., and A.M. Rollins

33.1 Brief Review of Gastroenterology and Endoscopy
33.2 Brief Review of EOCT Technology Development
33.2.1 Catheters (Scanners)
33.2.2 Real-Time OCT
33.2.3 Signal and Image Processing
33.2.4 Other Techniques
33.3 EOCT Studies to Date
33.3.1 Practical Aspects of EOCT
33.3.2 Ex Vivo Studies
33.3.3 Clinical Trials
33.3.4 Clinical Applications
33.3.5 Barrett’s Esophagus
33.3.6 Blood Flow Analysis
33.3.7 Pancreas and Biliary Tract
33.3.8 Colon
33.4 Future Directions

References

34 Imaging Coronary Atherosclerosis and Vulnerable Plaques with Optical Coherence Tomography
G.J. Tearney, I.-K. Jang, and B.E. Bouna

34.1 Introduction
34.2 Optical Coherence Tomography
34.3 Optical Coherence Tomography System
34.4 Ex Vivo Studies
34.4.1 Plaque Characterization
34.5 Clinical Studies
34.6 Current Technology Challenges
34.7 Future Outlook: Fourier Domain OCT
34.8 Optical Frequency Domain Imaging
34.9 Conclusion

References

35 OCT in Dermatology
J. Welzel, E. Lankenau, G. Hättmann, and R. Birngruber

35.1 Technical Demands for a Skin OCT-System
35.1.1 Introduction (OCT-Systems in Dermatology)
35.1.2 Medical Applicators
35.1.3 Quantification of Tissue Parameters
35.1.4 Image Processing
35.1.5 Field of View and Measurement Artifacts
38 Optical Coherence Tomography in Pulmonary Medicine
M. Brenner, H. Colt, Z. Chen, and S.B. Mahon

38.1 Introduction ... 1183
38.2 Pulmonary Anatomy and Physiology: Unique Aspects Relevant to OCT and F-OCT 1184
38.3 Anatomic Regions of the Pulmonary System Amenable to Potential Clinical OCT Applications 1185
38.3.1 Pulmonary Vascular System 1186
38.4 Standard Clinical Lung and Airway Anatomic Imaging Methods ... 1186
38.5 Direct Anatomic Airway Examination 1188
38.6 Initial Airway OCT Applications: Normal Clinical Anatomy ... 1189
38.7 Airway Imaging Systems .. 1190
38.8 Rigid Bronchoscopy Proximal Airway Evaluation 1193
38.9 Proximal Airway Pathology in Lung Cancer Detection 1195
38.10 Bronchogenic Cancers: Potential Role for OCT 1196
38.11 Autofluorescence Bronchoscopy and OCT for Airway Cancer Detection 1197
38.11.1 Autofluorescence and Enhanced Autofluorescence (AF) Bronchoscopic Imaging 1197
38.12 OCT Tumor Margin Assessment 1198
38.12.1 OCT Assisted Endobronchial Biopsy Techniques 1198
38.12.2 Endobronchial Cancer Detection Clinical Results 1199
38.12.3 Distal Airways and Alveolar OCT Evaluation 1199
38.13 Inhalation Injury ... 1201
38.14 Pleural and Thoracic OCT 1202
38.15 Motion Artifact and Sampling Rates 1202
38.16 Commercial Pulmonary Clinical OCT Systems 1202
38.17 Technological Development Needs for Clinical Pulmonary OCT Based Technology 1203
38.17.1 Improved Resolution 1203
38.17.2 Three-Dimensional Endoscopic Imaging 1203
38.17.3 Tissue Penetrating Probes and Needles 1204
38.17.4 Concurrent OCT Imaging and Biopsy Tools 1204
38.17.5 Optical Biopsy ... 1205
38.17.6 Multimodality Imaging 1206
38.18 Potential Pulmonary Organ System OCT Applications and Areas of Future Investigation 1207
38.19 Conclusion .. 1207
References ... 1207
39 OCT in Gynecology
I.A. Kuznetsova, N.D. Gladkova, V.M. Gelikonov, J.L. Belinson,
N.M. Shakhova, and F.I. Feldchtein .. 1211
39.1 Introduction: Motivation for OCT Application in Gynecology 1211
39.2 OCT-Colposcopy ... 1213
 39.2.1 Methodology and Patient Selection 1213
 39.2.2 Uterine Cervix OCT Protocol 1213
 39.2.3 OCT Images of Normal Cervix 1215
 39.2.4 OCT Images of Benign Processes 1217
 39.2.5 OCT as a Tool to Increase the Efficacy of Visual Cervical Examination .. 1223
39.3 PS OCT System Design and Performance 1228
39.4 OCT-Hysteroscopy .. 1231
 39.4.1 OCT Images of Normal Endometrium, Impact of Age and Hormonal Status ... 1231
39.5 OCT-Laparoscopy ... 1234
References .. 1238

40 Optical Coherence Tomography in Urology
E.V. Zagaynova, N.D. Gladkova, O.S. Streltsova, G.V. Gelikonov,
N. Tresser, F.I. Feldchtein, M.J. Manyak, and N.M. Shakhova 1241
40.1 Introduction ... 1241
40.2 OCT Applications for Benign Conditions of the Bladder 1243
 40.2.1 Normal Bladder ... 1243
 40.2.2 Bladder Diverticulum .. 1244
 40.2.3 Acute Cystitis .. 1244
 40.2.4 Chronic Cystitis ... 1245
 40.2.5 Follicular Cystitis .. 1246
 40.2.6 Radiation Cystitis ... 1246
 40.2.7 Urothelial Atrophy ... 1246
 40.2.8 Simple Urothelial Hyperplasia 1247
 40.2.9 von Brunn’s Nests ... 1247
 40.2.10 Cystitis Cystica .. 1248
 40.2.11 Squamous Metaplasia .. 1248
40.3 OCT Applications to Diagnostics and Treatment of Bladder Cancer ... 1249
 40.3.1 OCT Images of Malignant Conditions of the Bladder 1250
 40.3.2 OCT Accuracy in Detection of Bladder Cancer in Flat Suspicious Zones ... 1251
 40.3.3 OCT-Guided Surgery of the Bladder Cancer 1255
 40.3.4 OCT as an Adjunct to Fluorescence Cystoscopy 1256
40.4 OCT for Other Applications in Urology 1261
 40.4.1 Prostate Cancer .. 1261
 40.4.2 Retroperitoneal OCT Images .. 1262
40.5 Conclusion: Clinical Application of the OCT in Urology Today and Tomorrow. Can OCT Increase the Percentage of the Organ-Preserving Treatment? 1265

References ... 1266

41 Anatomical Optical Coherence Tomography of the Human Upper Airway
J.J. Armstrong, M.S. Leigh, J.H. Walsh, D.R. Hillman, P.R. Eastwood, and D.D. Sampson 1269

41.1 Introduction ... 1269

41.2 System Description ... 1271
41.2.1 Long-Range Delay Line .. 1273
41.2.2 Modeling ... 1274

41.3 Basic aOCT Validation Studies 1276

41.4 In Vivo Studies .. 1277
41.4.1 Pullback Scans ... 1277
41.4.2 Comparison of aOCT and CT 1279
41.4.3 Reproducibility of aOCT Scans 1280

41.5 Clinical Measurements .. 1280
41.5.1 Data Presentation ... 1281
41.5.2 Measuring Pharyngeal Compliance 1281
41.5.3 aOCT Scanning During Sleep 1283
41.5.4 Response of Airway Shape to Mandible and Tongue Position .. 1284

41.6 Further Data Processing ... 1285
41.6.1 Contour Extraction .. 1286
41.6.2 Three-Dimensional Reconstruction 1287

41.7 Discussion and Conclusions ... 1288

References ... 1290

42 Development of OCT Technology for Clinical Applications
J.M. Schmitt, C. Petersen, S. Zhang, R. Lovec, and C. Xu 1293

42.1 Creating a Clinical Imaging System 1293
42.1.1 Clinical Objectives ... 1294
42.1.2 The Product Development Process 1295
42.1.3 Engineering Design and Specifications 1296
42.1.4 Safety and Performance Standards 1300

42.2 The LightLab OCT Imaging System 1300
42.2.1 Imaging Engine ... 1300
42.2.2 Probe Interface Unit .. 1303
42.2.3 Image Wire™ ... 1304

42.3 Intracoronary OCT Imaging .. 1305
42.3.1 Clinical Need .. 1305
42.3.2 Coronary Delivery System 1306
42.3.3 Regulatory Status .. 1307
42.3.4 Preclinical Studies .. 1308
42.3.5 Clinical Studies ... 1310
42.3.6 In Vivo Imaging: Selected Cases 1311
42.3.7 Outlook for the Future 1313
42.4 Endoscopic OCT Imaging 1314
 42.4.1 Clinical Need .. 1314
 42.4.2 Regulatory Status 1315
 42.4.3 Endoscopic OCT Probes 1316
 42.4.4 Clinical Studies ... 1319
 42.4.5 Outlook for the Future 1323
References ... 1325

Index .. 1327
Optical Coherence Tomography Technology and Applications
(Eds.) W. Drexler; J.G. Fujimoto
2008, XXX, 1346 p. 758 illus., 287 in color. In 2 volumes, not available separately. Hardcover
ISBN: 978-3-540-77549-2