New Developments in the Visualization and Processing of Tensor Fields

Dagstuhl 2009 Seminar

Bearbeitet von
David H. Laidlaw, Anna Vilanova

ISBN 978 3 642 27342 1
Format (B x L): 15,5 x 23,5 cm
Gewicht: 771 g

Weitere Fachgebiete > Mathematik > Numerik und Wissenschaftliches Rechnen

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
Contents

Part I Structure-Tensor Computation

Structure Tensor Estimation: Introducing Monomial Quadrature Filter Sets .. 3
Hans Knutsson, Carl-Fredrik Westin, and Mats Andersson

1 Introduction .. 4
 1.1 This Chapter Presents ... 4

2 Monomial Filters .. 5
 2.1 Radial Part .. 5
 2.2 Directional Matrix .. 6
 2.3 Monomial Filter Matrices ... 7

3 Monomials Link Order, Scale and Gradients 9
 3.1 The Gradient Operator Increases Order and Shifts Scale 11

4 Monomial Filter Response Matrices ... 12
 4.1 Signal Classes ... 13

5 Monomial Structure Tensors .. 15
 5.1 Two Simple Examples .. 15
 5.2 General Structure Tensor Construction 16
 5.3 Monomial Quadrature .. 17
 5.4 Phase Invariance .. 17
 5.5 Tensor Positivity .. 17

6 Structure Tensor Variations ... 18
 6.1 The Structure Tensor, T_q .. 18
 6.2 The Gradient Tensor, T_G ... 19
 6.3 The Boundary Tensor, T_B ... 19
 6.4 The Energy Tensor, T_E ... 20
 6.5 Gradient Energy Tensor, T_{GE} 20
 6.6 Spatial 2nd Order Polynomial Tensor 20
 6.7 Spherical Harmonics ... 21
 6.8 Sum of Monomial Tensors .. 21

7 Table of Structure Tensor Related Algorithms 21
Adaptation of Tensor Voting to Image Structure Estimation
Rodrigo Moreno, Luis Pizarro, Bernhard Burgeth, Joachim Weickert, Miguel Angel Garcia, and Domenec Puig

1 Introduction
2 Tensor Voting
 2.1 Stick Tensor Voting
 2.2 The Plate Tensor Voting
 2.3 The Ball Tensor Voting
3 Relationships Between the Structure Tensor and Tensor Voting
 3.1 Similarities
 3.2 Differences
4 Tensor Voting for Structure Estimation
 4.1 Gray-Scale Images
 4.2 Color and Vector-Valued Images
 4.3 Tensor-Valued Images
5 Experimental Results
6 Concluding Remarks
References

Edge-Enhancing Diffusion Filtering for Matrix Fields
Bernhard Burgeth, Luis Pizarro, and Stephan Didas

1 Introduction
2 Edge-Enhancing Diffusion
3 Basic Differential Calculus for Matrix Fields
4 The Generalised Structure Tensor S_G for Matrix Fields
 4.1 A Diffusion Tensor D for Matrix Fields
5 Edge-Enhancing Diffusion Filtering for Matrix Fields
6 Numerical Issues
7 Experiments
8 Concluding Remarks
References

Part II Tensor-Field Visualization

Fabric-Like Visualization of Tensor Field Data on Arbitrary Surfaces in Image Space
Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann, and Gerik Scheuermann

1 Motivation and Related Work
2 Method
 2.1 Initial Noise Texture Generation
References
Beyond Topology: A Lagrangian Metaphor to Visualize the Structure of 3D Tensor Fields
Xavier Tricoche, Mario Hlawitschka, Samer Barakat, and Christoph Garth

Tensor Field Design: Algorithms and Applications
Eugene Zhang
Part III Applications of Tensor-Field Analysis and Visualization

Interactive Exploration of Stress Tensors Used in Computational Turbulent Combustion
Adrian Maries, Md. Abedul Haque, S. Levent Yilmaz, Mehdi B. Nik, and G. Elisabeta Marai
1 Introduction .. 138
2 Tensors in Turbulent Combustion .. 139
 2.1 Turbulent Combustion Modeling 139
 2.2 Challenges .. 142
3 Related Work .. 143
4 Methods .. 145
 4.1 Datasets .. 145
 4.2 Glyph Representation ... 146
 4.3 Volume Rendering and Streamlines 147
 4.4 Interactive Filtering ... 149
5 Results and Discussion .. 151
6 Conclusion ... 153
References ... 154

Shear Wave Diffusion Observed by Magnetic Resonance Elastography
Sebastian Papazoglou, Jürgen Braun, Dieter Klatt, and Ingolf Sack
1 Introduction .. 157
2 Theory ... 159
3 Methods .. 161
4 Results ... 163
5 Discussion and Conclusions .. 166
References ... 167

Part IV Diffusion Weighted MRI Visualization

A Comparative Analysis of Dimension Reduction Techniques for Representing DTI Fibers as 2D/3D Points
Xiaoyong Yang, Ruiyi Wu, Ziång Ding, Wei Chen, and Song Zhang
1 Introduction .. 171
2 Background .. 172
3 Dimension Reduction Methods ... 173
 3.1 Multidimensional Scaling (MDS) 174
 3.2 Locally Linear Embedding (LLE) 175
3.3 Principal Component Analysis (PCA) .. 175
3.4 IsoMap (Isometric Feature Mapping) .. 176
4 Experiment ... 176
 4.1 Data .. 177
 4.2 Method .. 177
 4.3 Results .. 179
 4.4 Discussion on Dimension Reduction .. 179
5 User Interface ... 181
6 Conclusions ... 183
7 Implementation .. 184
References .. 184

Exploring Brain Connectivity with Two-Dimensional Maps 187
Çağatay Demiralp, Radu Jianu, and David H. Laidlaw
1 Introduction ... 187
2 DWI ... 189
3 Related Work ... 190
4 Methods .. 191
 4.1 Image Acquisition and Fiber Tract Generation 191
 4.2 Measuring Similarities Between Fiber Tracts 192
 4.3 Clustering ... 192
 4.4 Planar Projections of Fiber Tracts ... 193
 4.5 Linked Multi-view Interaction .. 196
 4.6 Digital Map Interface ... 197
 4.7 Implementation ... 200
5 User Evaluation ... 200
 5.1 Anecdotal Study: Methods and Results ... 200
 5.2 Quantitative Study .. 201
6 Discussion .. 203
7 Conclusions .. 205
References .. 206

Uncertainty Propagation in DT-MRI Anisotropy Isosurface Extraction 209
Kai Pöthkow and Hans-Christian Hege
1 Introduction ... 209
2 Related Work ... 211
3 Methods .. 212
 3.1 Uncertainty Model ... 212
 3.2 Signal to Noise Ratio ... 212
 3.3 Condition Numbers .. 213
 3.4 Uncertainty Propagation .. 215
 3.5 Uncertain Isosurfaces .. 216
 3.6 Visualization ... 216
4 Results ... 217
 4.1 Synthetic DTI Data ... 217
 4.2 Brain DTI Data ... 217
Contents

5 Discussion and Conclusions .. 218
Appendix... 222
References ... 224

Part V Beyond Second-Order Diffusion Tensor MRI

Classification Study of DTI and HARDI Anisotropy Measures for HARDI Data Simplification ... 229
Vesna Prčkovska, Maxime Descoteaux, Cyril Poupon,
Bart M. ter Haar Romeny, and Anna Vilanova
1 Introduction.. 230
2 Related Work .. 233
3 Diffusion Data Acquisition .. 234
4 Methods .. 235
 4.1 HARDI Measures ... 235
 4.2 DTI Measures ... 237
 4.3 Analysis of Measures ... 237
 4.4 Real Data Analysis .. 240
5 Results ... 240
 5.1 Phantom Results .. 240
6 Discussion and Conclusions .. 246
Appendix... 249
References ... 249

Towards Resolving Fiber Crossings with Higher Order Tensor Inpainting ... 253
Thomas Schultz
1 Introduction.. 253
2 Related Work .. 254
3 Higher-Order Tensor Voting .. 255
 3.1 Basics of Tensor Voting ... 255
 3.2 Introducing Higher-Order Tensors 256
 3.3 Formalizing the Voting Process .. 257
 3.4 Analyzing the Accumulated Votes 258
4 Inpainting as a Preprocess for Tractography 259
5 Results ... 260
 5.1 Results on Synthetic Data .. 260
 5.2 Result on Real Data ... 261
 5.3 Distinguishing Crossings from Junctions 261
6 Conclusion and Future Work ... 263
References ... 263

Representation and Estimation of Tensor-Pairs 267
Carl-Fredrik Westin and Hans Knutsson
1 Introduction.. 268
2 Tensor-Pair Representation ... 268
 2.1 Representing an Un-Ordered Pair of Vectors 268
2.2 Reconstruction of the Two Vectors from the Representation 269
3 Mean Vector-Pair Estimation from Distributions 271
 3.1 Mean Vector-Pair Estimation from a Distribution of Vector-Pairs ... 271
 3.2 Mean Vector-Pair Estimation from a Distribution of Vectors 272
 3.3 Estimating the Amount of Samples from u and v 274
4 Tensor Neighborhoods .. 274
5 Neighborhood Averaging .. 275
 5.1 Normalized Convolution .. 276
6 Experiments and Results ... 276
 6.1 Two-Tensor Field Neighborhoods ... 277
 6.2 Single-Tensor Field Neighborhoods ... 277
7 Discussion and Conclusion .. 278
References .. 280

Part VI Tensor Metrics

On the Choice of a Tensor Distance for DTI White Matter Segmentation ... 283
Rodrigo de Luis-García, Carlos Alberola-López, and Carl-Fredrik Westin
1 Introduction .. 284
2 Tensor Similarity Measures ... 286
 2.1 Frobenius Distance .. 286
 2.2 Kullback-Leibler Distance ... 287
 2.3 Information Geodesic Distance ... 288
 2.4 Log-Euclidean Metrics ... 288
 2.5 Hybrid Distance ... 289
3 Tensor Distances Evaluation .. 290
 3.1 DT-MRI White Matter Atlases .. 290
 3.2 Tensor Distances Evaluation ... 291
4 Results and Discussion ... 293
5 Summary ... 303
References .. 304

Divergence Measures and Means of Symmetric Positive-Definite Matrices ... 307
Maher Moakher
1 Introduction .. 307
2 Bhattacharyya Divergence .. 310
 2.1 Bhattacharyya Divergence-Based Mean 313
3 Modified Bhattacharyya Divergence .. 315
 3.1 Mean Based on the Modified Bhattacharyya Divergence 317
4 Kullback-Leibler Divergence ... 317
 4.1 Kullback-Leibler Divergence-Based Mean 319
Metric Selection and Diffusion Tensor Swelling .. 323
Ofer Pasternak, Nir Sochen, and Peter J. Basser

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>323</td>
</tr>
<tr>
<td>2 Riemannian Metrics for Diffusion Tensors</td>
<td>324</td>
</tr>
<tr>
<td>2.1 The Euclidean and Geometric Metrics</td>
<td>325</td>
</tr>
<tr>
<td>2.2 Metric Selection</td>
<td>326</td>
</tr>
<tr>
<td>3 Determinant Versus Trace</td>
<td>326</td>
</tr>
<tr>
<td>3.1 Physical Considerations</td>
<td>327</td>
</tr>
<tr>
<td>4 Tensor Swelling</td>
<td>329</td>
</tr>
<tr>
<td>4.1 Variability Caused by Johnson Noise</td>
<td>329</td>
</tr>
<tr>
<td>4.2 The Extent of Tensor Shrinking in the Brain</td>
<td>331</td>
</tr>
<tr>
<td>4.3 Why Do Tensors Swell?</td>
<td>333</td>
</tr>
<tr>
<td>5 Beyond Riemannian Metrics</td>
<td>334</td>
</tr>
<tr>
<td>6 Summary</td>
<td>335</td>
</tr>
</tbody>
</table>

References ... 335

Part VII Tensor Analysis

\(H^2\)-Matrix Compression ... 339
Steffen Börm

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Overview</td>
<td>339</td>
</tr>
<tr>
<td>2 (H^2)-Matrix Representation</td>
<td>341</td>
</tr>
<tr>
<td>3 Compression</td>
<td>346</td>
</tr>
<tr>
<td>4 Improvements</td>
<td>356</td>
</tr>
<tr>
<td>4.1 Data-Sparse Input Matrices</td>
<td>357</td>
</tr>
<tr>
<td>4.2 Refined Error Control</td>
<td>358</td>
</tr>
<tr>
<td>4.3 Vector- or Matrix-Valued Matrices</td>
<td>359</td>
</tr>
<tr>
<td>4.4 Three-Dimensional Data</td>
<td>360</td>
</tr>
<tr>
<td>5 Summary</td>
<td>360</td>
</tr>
</tbody>
</table>

References ... 361

Harmonic Field Analysis .. 363
Christian Wagner, Christoph Garth, and Hans Hagen

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>363</td>
</tr>
<tr>
<td>2 Related Work</td>
<td>364</td>
</tr>
<tr>
<td>3 Harmonic Analysis</td>
<td>365</td>
</tr>
<tr>
<td>3.1 Fourier Decomposition</td>
<td>365</td>
</tr>
<tr>
<td>3.2 Spectral Theorem</td>
<td>366</td>
</tr>
<tr>
<td>3.3 Discrete Setting</td>
<td>367</td>
</tr>
<tr>
<td>3.4 Arbitrary Domain and Field Type</td>
<td>367</td>
</tr>
<tr>
<td>3.5 Global Harmonic Analysis</td>
<td>367</td>
</tr>
<tr>
<td>4 Local Harmonic Analysis</td>
<td>369</td>
</tr>
<tr>
<td>4.1 Locality and Local Feature Definition</td>
<td>369</td>
</tr>
</tbody>
</table>
5 Discretizations and Computational Issues 371
5.1 Finite Element Discretization .. 371
5.2 Discrete Exterior Calculus (DEC) Discretization 372
5.3 Comparison of FEM and DEC Discretizations 374
5.4 Computation of Large Eigenvalue Sets 376
6 Conclusion .. 377
References .. 378
Index .. 381