Vector Optimization

Theory, Applications, and Extensions

Bearbeitet von
Johannes Jahn

ISBN 978 3 642 17004 1
Format (B x L): 15,5 x 23,5 cm
Gewicht: 1930 g

Weitere Fachgebiete > Mathematik > Operational Research
Zu Leseprobe

schnell und portofrei erhältlich bei

beck-shop.de
Contents

Preface vii

I Convex Analysis 1

1 Linear Spaces 3
 1.1 Linear Spaces and Convex Sets 3
 1.2 Partially Ordered Linear Spaces 12
 1.3 Topological Linear Spaces 21
 1.4 Some Examples 32
 Notes 35

2 Maps on Linear Spaces 37
 2.1 Convex Maps 37
 2.2 Differentiable Maps 45
 Notes 59

3 Some Fundamental Theorems 61
 3.1 Zorn’s Lemma and the Hahn-Banach Theorem 61
 3.2 Separation Theorems 71
 3.3 A James Theorem 81
 3.4 Two Krein-Rutman Theorems 87
 3.5 Contingent Cones and a Lyusternik Theorem 90
 Notes 99
II Theory of Vector Optimization

4 Optimality Notions

Notes

5 Scalarization

5.1 Necessary Conditions for Optimal Elements of a Set

5.2 Sufficient Conditions for Optimal Elements of a Set

5.3 Parametric Approximation Problems

Notes

6 Existence Theorems

Notes

7 Generalized Lagrange Multiplier Rule

7.1 Necessary Conditions for Minimal and Weakly Minimal Elements

7.2 Sufficient Conditions for Minimal and Weakly Minimal Elements

7.2.1 Generalized Quasiconvex Maps

7.2.2 Sufficiency of the Generalized Multiplier Rule

Notes

8 Duality

8.1 A General Duality Principle

8.2 Duality Theorems for Abstract Optimization Problems

8.3 Specialization to Abstract Linear Optimization Problems

Notes

III Mathematical Applications

9 Vector Approximation

9.1 Introduction

9.2 Simultaneous Approximation

9.3 Generalized Kolmogorov Condition

9.4 Nonlinear Chebyshev Vector Approximation

9.5 Linear Chebyshev Vector Approximation
9.5.1 Duality Results .. 227
9.5.2 An Alternation Theorem 233
Notes .. 241

10 Cooperative n Player Differential Games 243
10.1 Basic Remarks on the Cooperation Concept 243
10.2 A Maximum Principle 245
 10.2.1 Necessary Conditions for Optimal and Weakly
 Optimal Controls 247
 10.2.2 Sufficient Conditions for Optimal and Weakly
 Optimal Controls 259
10.3 A Special Cooperative n Player Differential Game ... 270
Notes .. 277

IV Engineering Applications 279

11 Theoretical Basics of Multiobjective Optimization 281
 11.1 Basic Concepts 281
 11.2 Special Scalarization Results 291
 11.2.1 Weighted Sum Approach 292
 11.2.2 Weighted Chebyshev Norm Approach 304
 11.2.3 Special Scalar Problems 307
Notes .. 311

12 Numerical Methods ... 315
 12.1 Modified Polak Method 315
 12.2 Eichfelder-Polak Method 321
 12.3 Interactive Methods 325
 12.3.1 Modified STEM Method 326
 12.3.2 Method of Reference Point Approximation 330
 The Linear Case 332
 The Bicriterial Nonlinear Case 337
 12.4 Method for Discrete Problems 343
Notes .. 348
13 Multiobjective Design Problems 351
13.1 Design of Antennas 352
13.2 Design of FDDI Computer Networks 359
 13.2.1 A Cooperative Game 360
 13.2.2 Minimization of Mean Waiting Times 362
 13.2.3 Numerical Results 365
13.3 Fluidized Reactor-Heater System 367
 13.3.1 Simplification of the Constraints 369
 13.3.2 Numerical Results 371
13.4 A Cross-Current Multistage Extraction Process 373
13.5 Field Design of a Magnetic Resonance System 376
Notes 380

V Extensions to Set Optimization 383

14 Basic Concepts and Results of Set Optimization 385
Notes 391

15 Contingent Epiderivatives 393
15.1 Contingent Derivatives and Contingent Epiderivatives 393
15.2 Properties of Contingent Epiderivatives 397
15.3 Contingent Epiderivatives of Real-Valued Functions 401
15.4 Generalized Contingent Epiderivatives 405
Notes 409

16 Subdifferential 411
16.1 Concept of Subdifferential 411
16.2 Properties of the Subdifferential 413
16.3 Weak Subgradients 417
Notes 421

17 Optimality Conditions 423
17.1 Optimality Conditions with Contingent Epiderivatives 423
17.2 Optimality Conditions with Subgradients 428
17.3 Optimality Conditions with Weak Subgradients 429
17.4 Generalized Lagrange Multiplier Rule 431
 17.4.1 A Necessary Optimality Condition 432
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4.2 A Sufficient Optimality Condition</td>
<td>441</td>
</tr>
<tr>
<td>Notes</td>
<td>446</td>
</tr>
<tr>
<td>Bibliography</td>
<td>449</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>475</td>
</tr>
<tr>
<td>Index</td>
<td>477</td>
</tr>
</tbody>
</table>