Biomimetics -- Materials, Structures and Processes

Examples, Ideas and Case Studies

Bearbeitet von
Petra Gruber, Dietmar Bruckner, Christian Hellmich, Heinz-Bodo Schmiedmayer, Herbert Stachelberger, Ille C. Gebeshuber

ISBN 978 3 642 11933 0
Format (B x L): 15,5 x 23,5 cm
Gewicht: 590 g

Weitere Fachgebiete > Medizin > Human-Medizin, Gesundheitswesen > Medizintechnik, Medizinische Werkstoffe

Zu Leseprobe

schnell und portofrei erhältlich bei

beck-shop.de
Contents

1 **Biomimetics: Its Technological and Societal Potential** 1
Herbert Stachelberger, Petra Gruber, and Ille C. Gebeshuber

Part I Material Structure

2 **Bionic (Nano) Membranes** ... 9
Jovan Matovic and Zoran Jakšić
2.1 Artificial Nanomembranes .. 10
2.2 Biological Nanomembranes ... 12
2.3 Functionalization of Artificial Nanomembranes
Toward Bionic Structures at ISAS: TU Wien 13
2.3.1 Nanomembrane-Based Bionic Structures
for Energy Harvesting .. 13
2.3.2 Nanomembranes as Bionic Detectors
of Electromagnetic Radiation ... 19
2.4 Conclusion .. 22

3 **Biomimetics in Tribology** .. 25
I.C. Gebeshuber, B.Y. Majlis, and H. Stachelberger
3.1 Introduction: Historical Background and Current
Developments ... 26
3.2 Biology for Engineers .. 28
3.3 Method: The Biomimicry Innovation Method 30
3.4 Results: Biomimetics in Tribology – Best Practices
and Possible Applications ... 32
3.4.1 Application of the Biomimicry Innovation
Method Concerning Mechanical Wear 33
3.4.2 Application of the Biomimicry Innovation
Method Concerning Shear ... 35
4 Reptilian Skin as a Biomimetic Analogue for the Design of Deterministic Tribosurfaces .. 51
H.A. Abdel-Aal and M. El Mansori
4.1 Introduction .. 52
4.2 Background ... 56
 4.2.1 The Python Species ... 56
 4.2.2 Structure of Snake Skin 58
 4.2.3 Skin Shedding .. 59
4.3 Observation of Shed Skin .. 60
 4.3.1 Initial Observations ... 60
 4.3.2 Optical Microscopy Observations 62
 4.3.3 Scan Electron Microscopy Observations 63
4.4 Metrology of the Surface .. 69
 4.4.1 Topographical Metrology 69
 4.4.2 Bearing Curve Analysis 70
4.5 Correlation to Honed Surfaces 73
4.6 Conclusions and Future Outlook 77

5 Multiscale Homogenization Theory: An Analysis Tool for Revealing Mechanical Design Principles in Bone and Bone Replacement Materials ... 81
Christian Hellmich, Andreas Fritsch, and Luc Dormieux
5.1 Introduction ... 84
5.2 Fundamentals of Continuum Micromechanics 85
 5.2.1 Representative Volume Element 85
 5.2.2 Upscaling of Elasto-Brittle and Elastoplastic Material Properties ... 86
5.3 Bone’s Hierarchical Organization 88
5.4 Elastic and Strength Properties of the Elementary Components of Bone: Hydroxyapatite, Collagen, Water 88
5.5 Multiscale Micromechanical Representation of Bone 91
5.6 Experimental Validation of Multiscale Micromechanics Theory for Bone .. 93
5.7 How Bone Works: Mechanical Design Characteristics of Bone Revealed Through Multiscale Micromechanics 96
5.8 Some Conclusions from a Biological Viewpoint 98
6 Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties .. 105
J. Stampfl, H.E. Pettermann, and R. Liska
6.1 Introduction ... 105
6.2 Fabrication of Bioinspired Cellular Solids Using Lithography-Based Additive Manufacturing 107
6.2.1 Laser-Based Stereolithography 108
6.2.2 Dynamic Mask-Based Stereolithography 108
6.2.3 Inkjet-Based Systems ... 110
6.2.4 Two-Photon Polymerization 111
6.3 Photopolymers for Additive Manufacturing Technologies ... 112
6.3.1 Principles of Photopolymerization 112
6.3.2 Radical and Cationic Systems in Lithography-Based AMT ... 114
6.3.3 Biomimetic, Biocompatible, and Biodegradable Formulations ... 115
6.4 Mechanical Properties: Modeling and Simulation 118
6.4.1 Linear Elastic Behavior 118
6.4.2 Nonlinear Response .. 119
6.4.3 Sample Size and Effective Behavior 119
6.5 Conclusion .. 121

Part II Form and Construction

7 Biomimetics in Architecture [Architekturbionik] 127
Petra Gruber
7.1 Introduction ... 127
7.2 History: Different Approaches 128
7.2.1 Analogy and Convergence 129
7.2.2 Strategic Search for the Overlaps Between Architecture and Nature ... 130
7.3 Strategies: What is Transferred and How is it Done? 131
7.3.1 What is Transferred? .. 131
7.3.2 Methods ... 131
7.4 Application Fields: Successful Examples 134
7.4.1 Emergence and Differentiation: Morphogenesis 134
7.4.2 Interactivity .. 135
7.4.3 Dynamic Shape ... 135
7.4.4 Intelligence ... 136
7.4.5 Energy Efficiency ... 136
7.4.6 Material/Structure/Surface 137
7.4.7 Integration .. 137
7.5 Case Studies .. 138
7.5.1 Biomimetics Design Exercise 138
<table>
<thead>
<tr>
<th>7.5.2</th>
<th>Biomimetics Design Programmes, Workshops and Studies</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>Future Fields, Aims and Conclusion</td>
<td>144</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Aims</td>
<td>144</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Considerations About Future Developments</td>
<td>145</td>
</tr>
</tbody>
</table>

8 Biomorphism in Architecture: Speculations on Growth and Form .. 149
Dörte Kuhlmann

<table>
<thead>
<tr>
<th>8.1</th>
<th>Introduction</th>
<th>149</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>The Essence of Nature</td>
<td>150</td>
</tr>
<tr>
<td>8.3</td>
<td>Nature as a Source for Form</td>
<td>152</td>
</tr>
<tr>
<td>8.4</td>
<td>Natural Processes</td>
<td>153</td>
</tr>
<tr>
<td>8.5</td>
<td>Organic Versus “Mechanical” Form</td>
<td>156</td>
</tr>
<tr>
<td>8.6</td>
<td>Bionics and Cyborgs</td>
<td>159</td>
</tr>
<tr>
<td>8.7</td>
<td>Ecology</td>
<td>162</td>
</tr>
<tr>
<td>8.8</td>
<td>From Fractals to Catastrophies</td>
<td>165</td>
</tr>
<tr>
<td>8.9</td>
<td>Form Follows Function</td>
<td>167</td>
</tr>
<tr>
<td>8.10</td>
<td>The Concept of Organic Unity</td>
<td>171</td>
</tr>
<tr>
<td>8.11</td>
<td>Conclusion</td>
<td>174</td>
</tr>
</tbody>
</table>

9 Fractal Geometry of Architecture .. 179
Wolfgang E. Lorenz

<table>
<thead>
<tr>
<th>9.1</th>
<th>Fractal Concepts in Nature and Architecture</th>
<th>179</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1.1</td>
<td>From the Language of Fractals to Classification</td>
<td>179</td>
</tr>
<tr>
<td>9.2</td>
<td>Fractals: A Definition from a Mathematical and an Architectural Point of View</td>
<td>182</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Roughness and Length Measurement</td>
<td>182</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Scale Range and Distance</td>
<td>184</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Self-Similarity: An Important Attribute of Fractals</td>
<td>184</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Architectural Examples</td>
<td>186</td>
</tr>
<tr>
<td>9.2.5</td>
<td>Developed Through Iteration</td>
<td>187</td>
</tr>
<tr>
<td>9.2.6</td>
<td>Differences Between Architectural and Mathematical Fractals</td>
<td>189</td>
</tr>
<tr>
<td>9.2.7</td>
<td>Fractals as a Design Aid</td>
<td>189</td>
</tr>
<tr>
<td>9.2.8</td>
<td>Fractals Are Common to Nature</td>
<td>190</td>
</tr>
<tr>
<td>9.2.9</td>
<td>The Factor Chance</td>
<td>191</td>
</tr>
<tr>
<td>9.3</td>
<td>From Simulation to Measurement</td>
<td>192</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Curdling</td>
<td>192</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Fractal Dimension</td>
<td>194</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Perception and Distance</td>
<td>196</td>
</tr>
<tr>
<td>9.4</td>
<td>Fractal Dimension and Architecture</td>
<td>196</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Fractal Dimension and Approaching a Building</td>
<td>197</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Results of Measurement</td>
<td>198</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusions and Outlook</td>
<td>199</td>
</tr>
</tbody>
</table>
Part III Information and Dynamics

10 Biomimetics in Intelligent Sensor and Actuator Automation Systems 203
Dietmar Bruckner, Dietmar Dietrich, Gerhard Zucker, and Brit Müller
10.1 Research Field .. 204
10.2 Automation ... 204
10.3 Intelligence and Communication 206
10.4 Open Problems: Challenges in Research 207
10.5 Intelligence of Bionic Systems 209
 10.5.1 Hierarchical Model Conception 209
 10.5.2 Statistical Methods ... 210
 10.5.3 Definition of Intelligence 211
 10.5.4 Choice of the Right Model 212
 10.5.5 Top-Down Methodology 212
 10.5.6 A Unitary Model .. 213
 10.5.7 Differentiation Between Function, Behavior, and Projection ... 213
 10.5.8 Indispensable Interdisciplinarity 214
10.6 The Psychoanalytical Model ... 214
10.7 Conclusion .. 217

11 Technical Rebuilding of Movement Function Using Functional Electrical Stimulation 219
Margit Gföhler
11.1 Introduction ... 219
11.2 Principle .. 220
11.3 Actuation ... 220
 11.3.1 Stimulation Signal .. 222
 11.3.2 Electrodes ... 223
11.4 Stimulators .. 224
11.5 Control .. 225
 11.5.1 Modeling/Simulation 225
 11.5.2 Control Systems .. 227
11.6 Sensors .. 229
 11.6.1 Artificial Sensors ... 229
 11.6.2 Natural Sensors in the Peripheral Nervous System 229
 11.6.3 Volitional Biological Signals 230
11.7 Applications for the Lower Limb 231
 11.7.1 Cycling .. 231
 11.7.2 Rowing .. 239
 11.7.3 Gait .. 241
11.8 Applications for the Upper Limb 242
11.9 Outlook .. 243
References .. 244
12 Improving Hearing Performance Using Natural Auditory Coding Strategies ... 249

Frank Rattay
12.1 The Hair Cell Transforms Mechanical into Neural Signals 249
12.2 The Human Ear .. 251
12.3 Place Theory Versus Temporal Theory 253
12.4 Noise-Enhanced Auditory Information 253
12.5 Auditory Neural Network Sensitivity Can be Tested with Artificial Neural Networks 257
12.6 Cochlear Implants Versus Natural Hearing 258
12.7 Discussion .. 259
12.8 Conclusion .. 260

References ... 260

Index ... 263
Biomimetics -- Materials, Structures and Processes
Examples, Ideas and Case Studies
(Eds.) P. Gruber; D. Bruckner; C. Hellmich; H.-B. Schmiedmayer; H. Stachelberger; I.C. Gebeshuber
2011, XV, 266 p. 123 illus., 53 in color., Hardcover
ISBN: 978-3-642-11933-0