3 The Stationary Phase in Thin-Layer Chromatography

3.1 Activating and Deactivating Stationary Phases

3.2 Snyder’s Adsorption Model

3.3 Layer Characteristics

3.3.1 Layer Thickness (d_f)

3.3.2 Average Particle Size (d_p)

3.3.3 Particle Size Distribution

3.3.4 Specific Surface Area (O_s)

3.3.5 Pore Volume (V_p)

3.3.6 Average Pore diameter (P_d)

3.4 The Most Important Stationary Phases in TLC

3.4.1 Aluminium Oxide

3.4.2 Magnesium Silicate

3.4.3 Silica Gel

3.4.4 Chemically Bonded Silica Gel Layers

3.4.5 Kieselguhr

3.4.6 Cellulose

3.4.7 Polyamides

3.4.8 Ion Exchange Resins

3.4.9 Chiral Phases

3.4.10 Layers with Fluorescent Indicators

3.4.11 Making Your Own Plates

3.5 Light Absorption on Plate Surfaces

References

4 The Mobile Phase in Adsorption and Partition Chromatography

4.1 Solvent Characteristics

4.2 Solvent Theory for Adsorption Chromatography

4.3 Solvent Theory in Partition Chromatography

4.4 Optimizing Solvent Composition

4.5 The PRISMA Model (According to Nyiredy)

4.6 Solvent Additives

4.7 Appendix: Solvent Properties

References

5 Preparing and Applying Samples

5.1 Sample Preparation

5.1.1 The QuEChERS Approach

5.1.2 Solid-Phase Extraction

5.1.3 Stir Bar Sorptive Extraction
5.2 The Dosage Quality ... 108
5.3 Choice of Application Position 112
5.4 Practical Application Methods 113
 5.4.1 Sample Application via Plate Contact 113
 5.4.2 Sample Application Without Plate Contact 114
 5.4.3 Sample Application via Contact Spotting 114
 5.4.4 Plate Overloading and Incomplete Drying 116
References ... 117

6 Basis for TLC Development Techniques 119
 6.1 Influence of the Vapour Phase 119
 6.2 Chamber Types for Linear Development 123
 6.2.1 N-Chambers (“Trough Chambers”) 123
 6.2.2 S-Chamber (“Small Chamber”) 124
 6.2.3 Vario-KS-Chamber ... 125
 6.2.4 The H-Chamber (“Horizontal Chamber”) 125
 6.3 Controlling Separations via the Vapour Phase 126
 6.3.1 Solvent Composition During Separation 126
 6.3.2 Plate Pre-loading via the Vapour Phase 130
 6.4 Circular Separations .. 133
 6.5 Solvent Gradients .. 134
 6.5.1 Theory of Solvent Gradients 134
 6.5.2 Evaporation-Controlled Gradient Elution 140
 6.5.3 Multiple Development in TLC 142
 6.5.4 Automated Multiple Development (AMD) 143
 6.6 Normal Phase Separations with Water-Containing Solvents ... 145
 6.7 Plate Development with Forced Flow 147
 6.7.1 Rotation Planar Chromatography (RPC) 147
 6.7.2 Over-pressure Layer Chromatography (OPLC) 147
 6.8 Two Dimensional TLC (2D TLC) 148
 6.8.1 Development in Orthogonal Directions 148
 6.8.2 Grafted TLC .. 149
 6.8.3 Stability Test and SRS Technique 151
 6.9 Drying the Plate ... 153
References ... 153

7 Specific Staining Reactions .. 155
 7.1 Chemical Reactions Prior to Separation (Pre-chromatographic
 Derivatization) ... 157
 7.1.1 Sample Enrichment by Pre-chromatographic
 Derivatization .. 157
 7.1.2 Pre-chromatographic In Situ Derivatization 159
 7.1.3 Pre-chromatographic Staining 163
 7.1.4 Reagents in the Mobile Phase 167
7.2 Post-chromatographic Reactions (Derivatization After Development) ... 168
 7.2.1 Fluorescence Enhancer ... 170
 7.2.2 pH and Redox Indicators 171
 7.2.3 Universal Reagents (Charring Reagents) 172
 7.2.4 Aldehyde Reagents ... 173
 7.2.5 CH- and NH-Reacting Reagents 176
 7.2.6 Boron-Containing Reagents 180
 7.2.7 Alkaline Reagents .. 182
 7.2.8 Chloramine-T Reagent 183
 7.2.9 Diazotization Reactions 184
 7.2.10 Iodine-Starch and Wursters Reagents 185
 7.2.11 Reactions with Metal Reagents 187
 7.2.12 Reagents for Metal Cations 190
7.3 Reactions via the Gas Phase .. 191
 7.3.1 Ammonium Bicarbonate Reagent 192
 7.3.2 Tin(IV) Chloride Reagent 192
 7.3.3 Formic Acid Reagent .. 193
 7.3.4 Hydrogen Chloride Reagent 193
 7.3.5 Trichloroacetic Acid Reagent 193
 7.3.6 Nitric Acid Reagent .. 194
7.4 Thermal Treatment of TLC Plates 194
7.5 Activity Analysis Using Chemical Reagents 194
 7.5.1 Folin–Ciocalteu Reagent 195
 7.5.2 Checking for Free Radical Scavenger Activity Using DPPH Reagent .. 195
 7.5.3 Nucleophilic Reaction Ability 196
References .. 197

8 Bioeffective-Linked Analysis in Modern HPTLC 201
 8.1 Principle of the Method .. 202
 8.1.1 Contaminant Analysis in the Environment and Food and the Principle of Bioactivity-Based Analysis 202
 8.1.2 Aims and Fundamental Aspects of Bioeffective-Linked Analysis by Thin-Layer Chromatography 203
 8.1.3 HPTLC as a Method for Bioeffective-Linked Analysis 203
 8.2 General Rules for the Analysis of Bioeffective Compounds 205
 8.3 Enzyme Tests ... 206
 8.3.1 Urease-Inhibition Test for Heavy Metals 206
 8.3.2 Analysis Using Redox Enzymes 207
 8.3.3 The Detection of Cholinesterase Inhibitors 208
 8.4 Inhibition of Photosynthesis by Herbicides 216
 8.4.1 Reagent Preparation ... 216
 8.4.2 Hill Reaction ... 217
 8.4.3 Detection Using Algae .. 217

Contents

10.3 Mass-Dependent Reflection .. 270
10.4 Simplifying the Expression 274
References ... 274

11 Fluorescence in TLC Layers 277
11.1 Theory of Fluorescence and Phosphorescence 277
11.2 Fluorescence Enhancement .. 280
11.3 Quantification in TLC by Fluorescence 282
 11.3.1 Low Sample Concentration Fluorescence in Light Scattering Media .. 283
 11.3.2 High Sample Concentration Fluorescence in Light Scattering Media .. 284
11.4 Contour Plots for Fluorescence Evaluation 285
11.5 TLC Plates Containing a Fluorescent Dye 285
References ... 288

12 Chemometrics in HPTLC ... 289
12.1 Calculation of R_F Values 289
12.2 Compound Identification Using UV–Visible and Fluorescence Spectra ... 291
12.3 Correlation Spectroscopy .. 293
 12.3.1 Theory of Correlation Spectroscopy 293
 12.3.2 Combination of R_F and UV–Visible Spectral Library Search .. 296
 12.3.3 Zone Purity Check ... 296
12.4 Selection of the Measurement Wavelength 298
12.5 Statistical Photometric Error (Detector Variance) 301
 12.5.1 Reciprocal Model ... 301
 12.5.2 Absorbance Model ... 302
 12.5.3 Kubelka–Munk Model 303
 12.5.4 Fluorescence model .. 304
 12.5.5 Minimizing the Statistical Photometric Error 305
12.6 Diode Bundling and Data Smoothing 305
12.7 Signal Integration: Area or Height Evaluation? 307
12.8 Deconvolution of Overlapping Peaks 308
12.9 New Visualization Methods for Plots 310
References ... 313

13 Statistics for Quantitative TLC 315
13.1 The Mean Value ... 315
13.2 Variance and Precision ... 316
 13.2.1 Definition of Variance 316
 13.2.2 Relative Variance ... 318
 13.2.3 Quantification of Relative Variance 319