Intelligent Scene Modelling Information Systems

von
Georgios Miaoulis, Dimitri Plemenos

1. Auflage

Springer-Verlag Berlin Heidelberg 2009

Verlag C.H. Beck im Internet:
www.beck.de
ISBN 978 3 540 92901 7
Contents

1 Intelligent Scene Modelling Information Systems: The Case of Declarative Design Support ... 1
Georgios Miaoulis
1.1 Introduction.. 1
1.2 The Scene Modelling Process in Declarative Design Support........... 3
1.3 Information, Knowledge and Scene Models Representations............ 9
1.3.1 Physical Scene Models.. 12
1.3.2 Conceptual Scene Models – Generic Models............................. 14
1.3.3 Scene Conceptual Modelling in MultiCAD 16
1.4 Software Architectures for Declarative Design Support................. 21
1.4.1 MultiCAD: Objectives, Constraints and Functional Choices..... 22
1.4.2 Definition of MultiCAD Framework-Architecture................. 23
1.5 Conclusion... 25
References... 26

2 Declarative Modeling in Computer Graphics... 29
Dimitri Plemenos
2.1 Introduction .. 29
2.2 What Is Declarative Scene Modeling .. 30
2.3 Imprecision Management in Declarative Modelers......................... 31
2.4 A Classification of Declarative Scene Modelers............................... 32
2.4.1 Modelers Using Exploration Mode in Scene Generation.......... 32
2.4.2 Modelers Using Solution Search Mode in Scene Generation........... 35
2.4.3 Other Declarative or Declarative-Like Modelers......................... 38
2.5 Scene Understanding in Declarative Scene Modeling....................... 40
2.6 Constraint Satisfaction Techniques for Declarative Scene Modelers... 41
2.6.1 Arithmetic Constraint Satisfaction Techniques......................... 41
2.6.1.1 The Resolution Process.. 41
2.6.1.2 Constraint Logic Programming on Finite Domains – CLP(FD).... 42
2.6.1.3 Hierarchical Decomposition-Based Improvements........... 43
2.6.2 Geometric Constraint Satisfaction Techniques......................... 44
2.6.2.1 Principles of the MultiFormes Geometric Constraint Solver........ 45
Contents

2.6.2.2 The Resolution Process .. 45
2.6.2.3 The Intersection and Sampling Problems 45
2.6.2.4 Some Other Problems ... 46
2.6.3 Discussion ... 47
2.6.3.1 Arithmetic CSP .. 47
2.6.3.2 Geometric CSP ... 48
2.7 Declarative Scene Modeling and Machine-Learning Techniques ... 48
2.7.1 A Dynamical Neural Network for Filtering Unsatisfactory Solutions in DMHD 49
2.7.1.1 Structure of the Used Network 49
2.7.1.2 The Machine Learning Process 51
2.7.1.3 Discussion ... 52
2.8 Advantages and Drawbacks of Declarative Scene Modeling ... 53
2.9 Future Issues .. 54
2.10 Conclusion .. 55
References ... 55

3 Understanding Scenes

Vassilios S. Golfinopoulos
3.1 Introduction to Reverse Engineering 59
3.1.1 Reverse Engineering in Scene Modelling 60
3.1.2 Reverse Engineering and Geometric Modelling 62
3.1.3 Reverse Engineering and Feature-Based Modelling 63
3.1.4 Reverse Engineering and Declarative Modelling 65
3.2 Integration of the Two Models 68
3.3 Reconstruction Phase .. 69
3.4 Extended Design Methodology 70
3.5 System Architecture .. 71
3.5.1 Data and Knowledge Storage 73
3.5.2 The Stratified Representation 74
3.5.3 Extraction of Relations and Properties 77
3.5.4 Scene Modifications ... 78
3.5.5 The Propagation Policy ... 79
3.5.6 The Unified Stratified Representation 81
3.5.7 The Resultant Declarative Description 82
3.6 Conclusions .. 83
References ... 85

4 Intelligent Personalization in a Scene Modeling Environment

Georgios Bardis
4.1 Introduction .. 89
4.2 Intelligent Personalization and Contributing Fields 90
4.3 Preference Model ... 92
4.3.1 Preference Structure ... 92
4.3.2 User Preference as a Function 94
4.4 Multicriteria Decision Support 95
6 Aesthetic – Aided Intelligent 3D Scene Synthesis

Dimitrios Makris

6.1 Introduction

6.1.1 Research Scope

6.1.2 Proposed Methodology – Contributing Areas

6.2 Related Work

6.2.1 Evolutionary Computing Techniques

6.2.1.1 Evolutionary Design

6.2.1.2 Genetic Algorithm Applications in Design

6.2.2 Computational Aesthetic Approaches

6.2.3 Style Modelling Approaches

6.2.3.1 The Concept of Style

6.2.4 MultiCAD Framework Style

6.3 Research Approach

6.3.1 Architectural Style Modelling

6.3.1.1 Style Knowledge Framework

6.3.1.2 Measure of Style

6.3.2 Multi-objective Genetic Algorithm

6.3.2.1 Genetic Algorithm

6.3.2.2 MOGA Mechanism

6.4 Implementation Framework

6.4.1 Software Architecture

6.4.1.1 User Interface Layer

6.4.1.2 Processing Layer

6.4.1.3 Data Management Layer

6.5 System Evaluation

6.6 Discussion

6.7 Conclusions

6.7.1 Declarative Modelling and Architectural Conceptual Design

6.7.2 Aesthetic and Artificial Intelligence

References

7 Network Security Surveillance Aid Using Intelligent Visualization for Knowledge Extraction and Decision Making

Ioannis Xydas

7.1 Introduction

7.1.1 Web Security

7.1.2 Intrusion Detection

References