Contents

1 Complex Networks of Urban Environments ... 1

1.1 Paradigm of a City .. 4
 1.1.1 Cities and Humans .. 4
 1.1.2 Facing the Challenges of Urbanization 6
 1.1.3 The Dramatis Personæ: How Should a City Look? 9
 1.1.4 Cities Size Distribution and Zipf’s Law 15
 1.1.5 European Cities: Between Past and Future 17

1.2 Maps of Space and Urban Environments 18
 1.2.1 Object-Based Representations of Urban Environments.
 Primary Graphs .. 18
 1.2.2 Cognitive Maps of Space in the Brain Network 19
 1.2.3 Space-Based Representations of Urban Environments.
 Least Line Graphs .. 22
 1.2.4 Time-based Representations of Urban Environments 24
 1.2.5 How Did We Map Urban Environments? 26

1.3 Structure of City Spatial Graphs ... 28
 1.3.1 Matrix Representation of a Graph 29
 1.3.2 Shortest Paths in a Graph ... 31
 1.3.3 Degree Statistics of Urban Spatial Networks 32
 1.3.4 Integration Statistics of Urban Spatial Networks 35
 1.3.5 Scaling and Universality: Between Zipf and Matthew.
 Morphological Definition of a City 37
 1.3.6 Cameo Principle of Scale-Free Urban Developments 40
 1.3.7 Trade-Off Models of Urban Sprawl Creation 42

1.4 Comparative Study of Cities as Complex Networks 46
 1.4.1 Urban Structure Matrix .. 47
 1.4.2 Cumulative Urban Structure Matrix 49
 1.4.3 Structural Distance Between Cities 52

1.5 Summary .. 54
2 Wayfinding and Affine Representations of Urban Environments 55
 2.1 From Mental Perspectives to the Affine Representation of Space 56
 2.2 Undirected Graphs and Linear Operators Defined on Them 58
 2.2.1 Automorphisms and Linear Functions of the Adjacency Matrix 58
 2.2.2 Measures and Dirichlet Forms 61
 2.3 Random Walks Defined on Undirected Graphs 62
 2.3.1 Graphs as Discrete time Dynamical Systems 63
 2.3.2 Transition Probabilities and Generating Functions 63
 2.3.3 Stationary Distribution of Random Walks 64
 2.3.4 Continuous Time Markov Jump Process 66
 2.4 Study of City Spatial Graphs by Random Walks 66
 2.4.1 Alice and Bob Exploring Cities 67
 2.4.2 Mixing Rates in Urban Sprawl and Hell’s Kitchens 68
 2.4.3 Recurrence Time to a Place in the City 70
 2.4.4 What does the Physical Dimension of Urban Space Equal? 72
 2.5 First-Passage Times: How Random Walks Embed Graphs into Euclidean Space 74
 2.5.1 Probabilistic Projective Geometry 74
 2.5.2 Reduction to Euclidean Metric Geometry 76
 2.5.3 Expected Numbers of Steps are Euclidean Distances 78
 2.5.4 Probabilistic Topological Space 80
 2.5.5 Euclidean Embedding of the Petersen Graph 80
 2.6 Case study: Affine Representations of Urban Space 83
 2.6.1 Ghetto of Venice 83
 2.6.2 Spotting Functional Spaces in the City 86
 2.6.3 Bielefeld and the Invisible Wall of Niederwall 86
 2.6.4 Access to a Target Node and the Random Target Access Time 89
 2.6.5 Pattern of Spatial Isolation in Manhattan 92
 2.6.6 Neubeckum: Mosque and Church in Dialog 98
 2.7 Summary 99
 3 Exploring Community Structure by Diffusion Processes 101
 3.1 Laplace Operators and Their Spectra 101
 3.1.1 Random Walks and Diffusions on Weighted Graphs 102
 3.1.2 Diffusion Equation and its Solution 103
 3.1.3 Spectra of Special Graphs and Cities 104
 3.1.4 Cheeger’s Inequalities and Spectral Gaps 109
 3.1.5 Is the City an Expander Graph? 112
 3.2 Component Analysis of Transport Networks 114
 3.2.1 Graph Cut Problems 114
 3.2.2 Weakly Connected Graph Components 115
 3.2.3 Graph Partitioning Objectives as Trace Optimization Problems 117
3.3 Principal Component Analysis of Venetian Canals 121
 3.3.1 Sestieri of Venice 121
 3.3.2 A Time Scale Argument for the Number of Essential Vectors 124
 3.3.3 Low-Dimensional Representations of Transport Networks by Principal Directions 125
 3.3.4 Dynamical Segmentation of Venetian Canals 127
3.4 Thermodynamical Formalism for Urban Area Networks 129
 3.4.1 In Search of Lost Time: Is there an Alternative for Zoning? 129
 3.4.2 Internal Energy of Urban Space 131
 3.4.3 Entropy of Urban Space 132
 3.4.4 Pressure in Urban Space 134
3.5 Summary .. 136

4 Spectral Analysis of Directed Graphs and Interacting Networks . . . 137
 4.1 The Spectral Approach For Directed Graphs 138
 4.2 Random Walks on Directed Graphs 138
 4.2.1 A Time–Forward Random Walk 138
 4.2.2 Backwards Time Random Walks 139
 4.2.3 Stationary Distributions on Directed Graphs 140
 4.3 Laplace Operator Defined on the Aperiodic Strongly Connected Directed Graphs 141
 4.4 Bi-Orthogonal Decomposition of Random Walks Defined on Strongly Connected Directed Graphs 142
 4.4.1 Dynamically Conjugated Operators of Random Walks . . 142
 4.4.2 Measures Associated with Random Walks 143
 4.4.3 Biorthogonal Decomposition 144
 4.5 Spectral Analysis of Self-Adjoint Operators Defined on Directed Graphs 146
 4.6 Self-Adjoint Operators for Interacting Networks 148
 4.7 Summary .. 150

5 Urban Area Networks and Beyond 151
 5.1 Miracle of Complex Networks 151
 5.2 Urban Sprawl – a European Challenge 152
 5.3 Ranking Web Pages, Web Sites, and Documents 155
 5.4 Image Processing .. 155
 5.5 Summary .. 157

Bibliography .. 159

Index .. 177