4.3 Application to Finance: Portfolio Selection 48
4.4 Application to Sensitivity Analysis and Computation
of the “Greeks” in Finance 54
4.5 Exercises ... 59

5 White Noise, the Wick Product, and Stochastic
Integration .. 63
5.1 White Noise Probability Space 63
5.2 The Wiener–Itô Chaos Expansion Revisited 65
5.3 The Wick Product and the Hermite Transform 70
 5.3.1 Some Basic Properties of the Wick Product 72
 5.3.2 Hermite Transform and Characterization
 Theorem for (S)* 73
 5.3.3 The Spaces G and G* 76
 5.3.4 The Wick Product in Terms of Iterated Itô Integrals . 78
 5.3.5 Wick Products and Skorohod Integration 79
5.4 Exercises ... 83

6 The Hida–Malliavin Derivative on the Space
Ω = S′(R) ... 85
6.1 A New Definition of the Stochastic Gradient and a Generalized
 Chain Rule .. 85
6.2 Calculus of the Hida–Malliavin Derivative
 and Skorohod Integral 89
 6.2.1 Wick Product vs. Ordinary Product 89
 6.2.2 Closability of the Hida–Malliavin Derivative 90
 6.2.3 Wick Chain Rule 91
 6.2.4 Integration by Parts, Duality Formula,
 and Skorohod Isometry 93
6.3 Conditional Expectation on (S)* 95
6.4 Conditional Expectation on G* 98
6.5 A Generalized Clark–Ocone Theorem 99
6.6 Exercises ... 107

7 The Donsker Delta Function and Applications 109
7.1 Motivation: An Application of the Donsker Delta Function
to Hedging ... 109
7.2 The Donsker Delta Function 112
7.3 The Multidimensional Case 120
7.4 Exercises ... 127

8 The Forward Integral and Applications 129
8.1 A Motivating Example 129
8.2 The Forward Integral 132
8.3 Itô Formula for Forward Integrals 135
Contents

8.4 Relation Between the Forward Integral and the Skorohod Integral .. 138
8.5 Itô Formula for Skorohod Integrals ... 140
8.6 Application to Insider Trading Modeling
 8.6.1 Markets with No Friction .. 142
 8.6.2 Markets with Friction .. 147
8.7 Exercises .. 154

Part II The Discontinuous Case: Pure Jump Lévy Processes

9 A Short Introduction to Lévy Processes ... 159
 9.1 Basics on Lévy Processes ... 159
 9.2 The Itô Formula .. 163
 9.3 The Itô Representation Theorem for Pure Jump Lévy Processes 166
 9.4 Application to Finance: Replicability ... 169
 9.5 Exercises ... 171

10 The Wiener–Itô Chaos Expansion ... 175
 10.1 Iterated Itô Integrals .. 175
 10.2 The Wiener–Itô Chaos Expansion ... 176
 10.3 Exercises ... 180

11 Skorohod Integrals ... 181
 11.1 The Skorohod Integral .. 181
 11.2 The Skorohod Integral as an Extension of the Itô Integral 182
 11.3 Exercises ... 184

12 The Malliavin Derivative .. 185
 12.1 Definition and Basic Properties .. 185
 12.2 Chain Rules for Malliavin Derivative .. 188
 12.3 Malliavin Derivative and Skorohod Integral .. 190
 12.3.1 Skorohod Integral as Adjoint Operator to the Malliavin Derivative 190
 12.3.2 Integration by Parts and Closability of the Skorohod Integral 190
 12.3.3 Fundamental Theorem of Calculus ... 192
 12.4 The Clark–Ocone Formula ... 194
 12.5 A Combination of Gaussian and Pure Jump Lévy Noises 195
 12.6 Application to Minimal Variance Hedging with Partial Information 198
 12.7 Computation of “Greeks” in the Case of Jump Diffusions 204
 12.7.1 The Barndorff–Nielsen and Shephard Model 205
 12.7.2 Malliavin Weights for “Greeks” .. 207
 12.8 Exercises ... 211
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Lévy White Noise and Stochastic Distributions</td>
<td>213-240</td>
</tr>
<tr>
<td>13.1</td>
<td>The White Noise Probability Space</td>
<td>213</td>
</tr>
<tr>
<td>13.2</td>
<td>An Alternative Chaos Expansion and the White Noise</td>
<td>214</td>
</tr>
<tr>
<td>13.3</td>
<td>The Wick Product</td>
<td>219</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Definition and Properties</td>
<td>219</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Wick Product and Skorohod Integral</td>
<td>222</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Wick Product vs. Ordinary Product</td>
<td>225</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Lévy–Hermite Transform</td>
<td>226</td>
</tr>
<tr>
<td>13.4</td>
<td>Spaces of Smooth and Generalized Random Variables: (\mathcal{G}) and (\mathcal{G}^*)</td>
<td>227</td>
</tr>
<tr>
<td>13.5</td>
<td>The Malliavin Derivative on (\mathcal{G}^*)</td>
<td>228</td>
</tr>
<tr>
<td>13.6</td>
<td>A Generalization of the Clark–Ocone Theorem</td>
<td>230</td>
</tr>
<tr>
<td>13.7</td>
<td>A Combination of Gaussian and Pure Jump Lévy Noises in the White Noise Setting</td>
<td>235</td>
</tr>
<tr>
<td>13.8</td>
<td>Generalized Chain Rules for the Malliavin Derivative</td>
<td>237</td>
</tr>
<tr>
<td>13.9</td>
<td>Exercises</td>
<td>240</td>
</tr>
<tr>
<td>14</td>
<td>The Donsker Delta Function of a Lévy Process and Applications</td>
<td>241-263</td>
</tr>
<tr>
<td>14.1</td>
<td>The Donsker Delta Function of a Pure Jump Lévy Process</td>
<td>242</td>
</tr>
<tr>
<td>14.2</td>
<td>An Explicit Formula for the Donsker Delta Function</td>
<td>242</td>
</tr>
<tr>
<td>14.3</td>
<td>Chaos Expansion of Local Time for Lévy Processes</td>
<td>247</td>
</tr>
<tr>
<td>14.4</td>
<td>Application to Hedging in Incomplete Markets</td>
<td>253</td>
</tr>
<tr>
<td>14.5</td>
<td>A Sensitivity Result for Jump Diffusions</td>
<td>256</td>
</tr>
<tr>
<td>14.5.1</td>
<td>A Representation Theorem for Functions of a Class of Jump Diffusions</td>
<td>256</td>
</tr>
<tr>
<td>14.5.2</td>
<td>Application: Computation of the “Greeks”</td>
<td>261</td>
</tr>
<tr>
<td>14.6</td>
<td>Exercises</td>
<td>263</td>
</tr>
<tr>
<td>15</td>
<td>The Forward Integral</td>
<td>265-272</td>
</tr>
<tr>
<td>15.1</td>
<td>Definition of Forward Integral and its Relation with the Skorohod Integral</td>
<td>265</td>
</tr>
<tr>
<td>15.2</td>
<td>Itô Formula for Forward and Skorohod Integrals</td>
<td>268</td>
</tr>
<tr>
<td>15.3</td>
<td>Exercises</td>
<td>272</td>
</tr>
<tr>
<td>16</td>
<td>Applications to Stochastic Control: Partial and Inside Information</td>
<td>273-286</td>
</tr>
<tr>
<td>16.1</td>
<td>The Importance of Information in Portfolio Optimization</td>
<td>273</td>
</tr>
<tr>
<td>16.2</td>
<td>Optimal Portfolio Problem under Partial Information</td>
<td>274</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Formalization of the Optimization Problem: General Utility Function</td>
<td>275</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Characterization of an Optimal Portfolio Under Partial Information</td>
<td>276</td>
</tr>
<tr>
<td>16.2.3</td>
<td>Examples</td>
<td>283</td>
</tr>
<tr>
<td>16.3</td>
<td>Optimal Portfolio under Partial Information in an Anticipating Environment</td>
<td>286</td>
</tr>
<tr>
<td>Contents</td>
<td>XIII</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>16.3.1 The Continuous Case: Logarithmic Utility</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>16.3.2 The Pure Jump Case: Logarithmic Utility</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>16.4 A Universal Optimal Consumption Rate for an Insider</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>16.4.1 Formalization of a General Optimal Consumption Problem</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>16.4.2 Characterization of an Optimal Consumption Rate</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>16.4.3 Optimal Consumption and Portfolio</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>16.5 Optimal Portfolio Problem under Inside Information</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>16.5.1 Formalization of the Optimization Problem: General Utility Function</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>16.5.2 Characterization of an Optimal Portfolio under Inside Information</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>16.5.3 Examples: General Utility and Enlargement of Filtration</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>16.6 Optimal Portfolio Problem under Inside Information: Logarithmic Utility</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>16.6.1 The Pure Jump Case</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>16.6.2 A Mixed Market Case</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>16.6.3 Examples: Enlargement of Filtration</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>16.7 Exercises</td>
<td>331</td>
<td></td>
</tr>
<tr>
<td>17 Regularity of Solutions of SDEs Driven by Lévy Processes</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>17.1 The Pure Jump Case</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>17.2 The General Case</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>17.3 Exercises</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>18 Absolute Continuity of Probability Laws</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>18.1 Existence of Densities</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>18.2 Smooth Densities of Solutions to SDE’s Driven by Lévy Processes</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>18.3 Exercises</td>
<td>347</td>
<td></td>
</tr>
<tr>
<td>Appendix A: Malliavin Calculus on the Wiener Space</td>
<td>349</td>
<td></td>
</tr>
<tr>
<td>A.1 Preliminary Basic Concepts</td>
<td>349</td>
<td></td>
</tr>
<tr>
<td>A.2 Wiener Space, Cameron–Martin Space, and Stochastic Derivative</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>A.3 Malliavin Derivative via Chaos Expansions</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td>Solutions</td>
<td>363</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>Notation and Symbols</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>411</td>
<td></td>
</tr>
</tbody>
</table>