Contents

1 Introduction ... 1

Part I Nonrelativistic Collisions

2 First Order Considerations 7
 2.1 Quantum Plane-Wave Born Approximation 7
 2.1.1 Elastic Target Mode 9
 2.1.2 Inelastic Target Mode 10
 2.1.3 Collisions with Large Momentum Transfer.
 Free Collision Model 10
 2.2 Semi-Classical Approach 12

3 Considerations Beyond First Order Perturbation Theory 17
 3.1 Second Order Approximation 17
 3.2 Distorted-Wave Approach 20
 3.2.1 Symmetric Eikonal Model 23
 3.2.2 Symmetric Eikonal Model: ‘Electrostatic’ Approach 24
 3.2.3 An Example of Applications:
 Electron Angular Distribution 27
 3.3 Coupled Channel Approach 28
 3.4 Sudden Approximation 30
 3.4.1 Elastic Contribution from the Target 31
 3.4.2 Total Contribution from the Target 32
 3.5 Glauber Approximation 33
 3.6 Classical Trajectory Monte Carlo Approach 35
 3.7 Projectile Electron Loss, Comparison with Experiment 37
 3.7.1 Total Loss Cross Section 37
 3.7.2 Loss Cross Section Resolved over the Final Charge
 States of the Target 39
3.7.3 Longitudinal Momentum Distribution of Target Recoil Ions .. 40
3.7.4 Two-Center Interactions in 3.6 MeV u⁻¹ C²⁺ + He → C³⁺ + He⁺ + 2e⁻ Collisions 42
3.7.5 Mutual Electron Removal in 0.2 MeV H⁻ + He Collisions ... 44

Part II Relativistic Collisions

4 Introduction to Relativistic Collisions 51
 4.1 Elements of the Special Theory of Relativity 51
 4.1.1 The Lorentz Transformation 52
 4.1.2 Four-Dimensional Space and Four-Vectors 53
 4.1.3 Relativistic Addition of Velocities 55
 4.1.4 Transformation of Energy–Momentum 55
 4.1.5 Transformations of Cross Sections 56
 4.2 The Electromagnetic Field 57
 4.2.1 The Maxwell Equations and the Conservation of Electric Charge 57
 4.2.2 Potentials of the Electromagnetic Field, Gauge Transformations 58
 4.2.3 Maxwell Equations for the Field Potentials 59
 4.3 The Dirac Equation ... 60
 4.3.1 The Hamiltonian Form 60
 4.3.2 Gauge Invariance of the Dirac Equation 62
 4.3.3 The Covariant Form 62
 4.3.4 Classification of States in a Spherical Potential 62
5 Descriptions of Collisions Within the First Order Approximation in the Projectile–Target Interaction ... 67
 5.1 Preliminary Remarks .. 67
 5.2 Simplified Semi-Classical Consideration 70
 5.3 Plane-Wave Born Approximation 73
 5.3.1 The Form-Factor Coupling 79
 5.4 Semi-Classical Approximation 79
 5.4.1 Equivalence of the Semi-Classical and the Plane-Wave Born Treatments 82
 5.5 Relativistic Features and the Nonrelativistic Limit 83
 5.6 Consideration on the Base of Quantum Electrodynamics 84
 5.7 Gauge Independence and the Continuity Equation 86
 5.8 Calculations in the Coulomb Gauge 88
 5.8.1 The Longitudinal and Transverse Contributions to the Loss Cross Section 89
5.9 Simplification of the Atomic Transition Four-Current:
The ‘Nonrelativistic Atom’ Approximation 90
5.9.1 The Effective Atomic Charge 93
5.10 Manipulations with the Transition Matrix Elements
as a Change of Gauge .. 96
5.10.1 Calculations with Approximate States
for the Projectile Electron 99
5.11 Projectile-Electron Transitions as a Three-Body Problem 100
5.11.1 Relativistic, Nonrelativistic and Semi-Relativistic Electron Descriptions 102
5.12 Relativistic Ion–Atom Collisions and Nonrelativistic Form-Factors .. 112
5.13 Electron–Positron Pair Production in Collisions of Bare Ions with Neutral Atoms 113
5.14 Two-Center Dielectronic Transitions 114
5.14.1 Mutual Projectile–Target Ionization 114
5.14.2 Radiation Field and Resonant Two-Center Dielectronic Transitions 123

6 Theoretical Methods Extending beyond the First Order Approximation 131
6.1 Collisions with Light Atoms: Preliminary Remarks 131
6.2 Symmetric Eikonal Model 132
6.2.1 The Nonrelativistic Limit 134
6.2.2 The Relationship with the First Order Theory 135
6.2.3 Projectiles with More Than One Electron 136
6.2.4 Inclusion of the Nuclear–Nuclear Interaction 137
6.2.5 Collisions with Two-Electron Atoms 137
6.2.6 Some Applications 138
6.3 Collisions with Heavy Atoms: Preliminary Remarks 148
6.4 Extreme Relativistic Collisions with Heavy Atoms 149
6.4.1 Light-Cone Potentials 152
6.4.2 Classical Electron in the Field of a Particle Moving with the Speed of Light 153
6.4.3 Quantum Electron in the Field of a Particle Moving with the Speed of Light 156
6.4.4 Light-Cone Approximation for Ion–Atom Collisions . . . 159
6.4.5 Collisions at High but Finite γ: Combination of the Light-Cone and First Order Approaches 164
6.4.6 The Light-Cone Approximation for a Nonrelativistic Electron .. 165
6.5 Collisions at Relatively Low Energies:
Three-Body Distorted-Wave Models 168
8.6 Charge States of 33 TeV Pb Projectiles Penetrating Solid Targets: Multiple Collision Effects 222
8.6.1 Fraction of Hydrogen-Like Ions .. 224
8.6.2 Effective Loss Cross Section ... 225
8.7 Differential Loss Cross Sections in Collisions at High γ 229
8.7.1 Energy Spectra of Electrons Emitted by Projectiles Under the Single-Collision Conditions 229
8.7.2 The Spectrum of Electrons Emitted by 33 TeV Lead Ions Penetrating Thin Foils. The Role of Excited States of the Projectile .. 234
8.8 On the Longitudinal and Transverse Contributions to the Total Loss Cross Section .. 239
8.9 Loss Cross Sections at Asymptotically High γ: Saturation Effect .. 241
8.10 Excitation and Break-Up of Pionium in Relativistic Collisions with Neutral Atoms 244
8.11 Higher-Order Effects at Asymptotically High γ 246

A Appendix ... 249
A.1 Nonrelativistic Atom Approximation for the Screening Mode ... 249
A.2 The Schrödinger–Pauli Equation and Relativistic Collisions ... 250
A.2.1 Wave Equation for a Nonrelativistic Electron and the $\frac{\nabla^2}{c^2}\Psi$ Term .. 252
A.2.2 ‘First Order’ Amplitude and Nonconserved Electron Current ... 256
A.2.3 Correct Form of the First Order Amplitude 257
A.2.4 Few Remarks on the Treatment of the Transformation from the Klein–Gordon Equation to the Schrödinger Equation given in Some Textbooks ... 258
A.3 On the Existence of the ‘Overlap’ Region ... 259
A.3.1 Collisions with a Point-Like Charge 259
A.3.2 Collisions with a Neutral Atom 260
A.4 Radiative Atomic Processes and Galilean and Gauge Transformations .. 261
A.4.1 One Radiating Atomic System and Two Reference Frames: Galilean Invariance 262
A.4.2 Two Radiating Systems and One Reference Frame: The Problem of Gauge Dependence 268
A.4.3 Example: Radiative Electron Capture 271
A.4.4 A Gauge Test for the IB and CDW Models of the Radiative Electron Capture .. 272

References ... 277