Contents

Preface .. v

1 Natural computing paradigms and emergent computation 1
 1.1 Principles of natural computing ... 1
 1.1.1 Natural computing structures as hierarchies of interconnected cells .. 1
 1.1.2 The principle of optimal number of entities (Ockham’s razor) 2
 1.1.3 Natural computing systems are dissipative systems 3
 1.1.4 Transient nature of the behavioral complexity of natural systems .. 3
 1.1.5 Natural systems and recurrence .. 3
 1.1.6 Emergence, complexity, and local activity of cells 3
 1.2 Open problems and book description ... 4

2 Cellular nonlinear networks: state of the art and applications 7
 2.1 Introduction ... 7
 2.2 Typical applications of cellular computers ... 9
 2.3 Hardware platforms for implementing cellular computers 12

3 Cellular and natural computing models and software simulation 15
 3.1 Cellular systems: cells, neighborhoods, states and dynamics 15
 3.1.1 Genes ... 17
 3.1.2 Discrete and continuous states and outputs 17
 3.1.3 Boundary conditions .. 17
 3.2 Major cellular systems paradigms ... 18
 3.2.1 The Cellular Neural Network (CNN) model 18
 3.2.2 The Generalized Cellular Automata .. 19
 3.2.3 Reaction-Diffusion Cellular Nonlinear Networks 20
 3.3 Matlab simulation of Generalized cellular automata
 and cellular neural networks ... 21
 3.3.1 Uncoupled GCAs .. 21
 3.3.2 Coupled GCAs .. 23
 3.3.3 Simulation of standard cellular neural networks 25
 3.4 Nonlinear representation of cells .. 25
 3.4.1 Piecewise-linear representation and implementation 26
 3.4.2 Extended families of cells ... 36
 3.4.3 Structured universes of cells ... 37
 3.5 Modeling and simulation of semitotalistic cellular automata 38
 3.6 Modeling and simulation of “Small-Worlds” systems 40
 3.7 A wider variety of cells, taxonomy and family labels 41
 3.8 A CA simulator for all kind of cells .. 43
x Contents

4 Emergence, locating and measuring it ... 47
 4.1 Emergence: the software engineering of cellular computing systems ... 47
 4.2 Visual interpretation of emergent phenomena – classes of behaviors ... 48
 4.3 Semitotalistic cells: a first step in narrowing the search space 57
 4.4 Clustering and transients and as measures of emergence 60
 4.4.1 Visualizing complexity for an entire family of
 cellular systems – Wolfram classes revisited 66
 4.5 Simulation examples, properties, more accurate complexity measures ... 69
 4.5.1 Properties of complexity measures 71
 4.5.2 A composite complexity measure 74

5 Exponents of growth .. 77
 5.1 Exponents of growth and their relationship to various emergent
 behaviors .. 77
 5.2 Mutations for continuous state cellular systems 85
 5.3 Distribution of exponents of growth among families of genes 87
 5.4 Influences of the “Small World” model 89
 5.4.1 The “small worlds” model allows fine tuning of the
 “edge of chaos” .. 90
 5.5 On the independence between various measures of complexities 92

6 Sieves for selection of genes according to desired behaviors 95
 6.1 Introduction .. 95
 6.2 Defining sieves ... 96
 6.3 Examples and applications of the double sieve method 99
 6.3.1 Intelligent life behaviors and uncertainty in using sieves 99
 6.3.2 Classic “Life”: using sieves to locate similar behaviors 101
 6.3.3 Other interesting emergent behaviors 104
 6.3.4 Sieves to locate feature extractors 107
 6.3.5 Pink-noise generators .. 109
 6.3.6 Sieving and intelligence – evolving a list of interesting genes ... 110

7 Predicting emergence from cell’s structure 113
 7.1 Introduction .. 113
 7.2 Relationships between CA behavior and the Boolean
 description of the cell .. 114
 7.3 Parametrizations as tools to locate similar behaviors 116
 7.4 The theory of probabilistic exponents of growth 118
 7.4.1 Uncertainty index of a cell, active and expansion areas 120
 7.4.2 Minimal set of cells to compute the probabilistic
 exponent of growth .. 121
 7.4.3 Computing the cells function of probability 123
 7.4.4 Computing the probabilistic exponent of growth 124
 7.5 Exponents of growth and their significance 126
 7.5.1 Predicting behaviors from ID, an example 127
 7.5.2 Other properties of the probabilistic exponents of growth 127
 7.5.3 Comparison with the experimental exponent of growth 129
 7.6 Conclusions .. 130
8 Applications of emergent phenomena .. 133
8.1 Introduction .. 133
8.2 Smart sensor for character recognition 134
 8.2.1 Motivation and general description 134
 8.2.2 Architecture and functionality of the CA-based sensor 136
 8.2.3 Feature extraction and classification 138
 8.2.4 Experimental results ... 140
8.3 Excitable membranes, for temporal sequence classification 141
 8.3.1 Mapping variable-length signals into terminal states 142
 8.3.2 Detecting genes to build EMTMs 144
 8.3.3 Experimental results in sound classification 145
8.4 Image compression using CA-based vector quantization 147
 8.4.1 Coding and decoding principle 147
 8.4.2 Detecting the useful genes .. 151
 8.4.3 Results and comparison with other compression standards ... 153
 8.4.4 Aspects on hardware implementation 156

References .. 159

Index ... 165