Contents

1 Wiener Integration with Respect to Fractional Brownian Motion ... 1
 1.1 The Elements of Fractional Calculus .. 1
 1.2 Fractional Brownian Motion: Definition and Elementary Properties .. 7
 1.3 Mandelbrot-van Ness Representation of fBm .. 9
 1.4 Fractional Brownian Motion with $H \in (\frac{1}{2}, 1)$ on the White Noise Space 10
 1.5 Fractional Noise on White Noise Space ... 12
 1.6 Wiener Integration with Respect to fBm ... 16
 1.7 The Space of Gaussian Variables Generated by fBm 24
 1.8 Representation of fBm via the Wiener Process on a Finite Interval .. 26
 1.9 The Inequalities for the Moments of the Wiener Integrals with Respect to fBm 35
 1.10 Maximal Inequalities for the Moments of Wiener Integrals with Respect to fBm 41
 1.11 The Conditions of Continuity of Wiener Integrals with Respect to fBm .. 54
 1.12 The Estimates of Moments of the Solution of Simple Stochastic Differential Equations Involving fBm 55
 1.13 Stochastic Fubini Theorem for the Wiener Integrals w.r.t fBm ... 57
 1.14 Martingale Transforms and Girsanov Theorem for Long-memory Gaussian Processes 58
 1.15 Nonsemimartingale Properties of fBm; How to Approximate Them by Semimartingales 71
 1.15.1 Approximation of fBm by Continuous Processes of Bounded Variation 71
 1.15.2 Convergence $B^{H,\beta} \to B^H$ in Besov Space $W_\lambda[a,b]$ 73
 1.15.3 Weak Convergence to fBm in the Schemes of Series .. 78
1.16 Hölder Properties of the Trajectories of fBm and of Wiener Integrals w.r.t. fBm .. 87
1.17 Estimates for Fractional Derivatives of fBm and of Wiener Integrals w.r.t. Wiener Process via the Garsia–Rodemich–Rumsey Inequality ... 88
1.18 Power Variations of fBm and of Wiener Integrals w.r.t. fBm . 90
1.19 Lévy Theorem for fBm .. 94
1.20 Multi-parameter Fractional Brownian Motion 117
1.20.1 The Main Definition .. 117
1.20.2 Hölder Properties of Two-parameter fBm 117
1.20.3 Fractional Integrals and Fractional Derivatives of Two-parameter Functions 118

2 Stochastic Integration with Respect to fBm and Related Topics ... 123
2.1 Pathwise Stochastic Integration .. 123
2.1.1 Pathwise Stochastic Integration in the Fractional Sobolev-type Spaces ... 123
2.1.2 Pathwise Stochastic Integration in Fractional Besov-type Spaces .. 128
2.2 Pathwise Stochastic Integration w.r.t. Multi-parameter fBm . 131
2.2.1 Some Additional Properties of Two-parameter Fractional Integrals and Derivatives 131
2.2.2 Generalized Two-parameter Lebesgue–Stieltjes Integrals ... 132
2.2.3 Generalized Integrals of Two-parameter fBm in the Case of the Integrand Depending on fBm 136
2.2.4 Pathwise Integration in Two-parameter Besov Spaces ... 136
2.2.5 The Existence of the Integrals of the Second Kind of a Two-parameter fBm .. 137
2.3 Wick Integration with Respect to fBm with $H \in [1/2, 1)$ as S^*-integration ... 141
2.3.1 Wick Products and S^*-integration 141
2.3.2 Comparison of Wick and Pathwise Integrals for “Markov” Integrands .. 145
2.3.3 Comparison of Wick and Stratonovich Integrals for “General” Integrands 154
2.3.4 Reduction of Wick Integration w.r.t. Fractional Noise to the Integration w.r.t. White Noise 157
2.4 Skorohod, Forward, Backward and Symmetric Integration w.r.t. fBm. Two Approaches to Skorohod Integration 158
2.5 Isometric Approach to Stochastic Integration with Respect to fBm ... 162
2.5.1 The Basic Idea .. 162
2.5.2 First- and Higher-order Integrals with Respect to X 164
2.5.3 Generalized Integrals with Respect to fBm 169
2.6 Stochastic Fubini Theorem for Stochastic Integrals w.r.t. Fractional Brownian Motion .. 174
2.7 The Itô Formula for Fractional Brownian Motion 182
 2.7.1 The Simplest Version ... 182
 2.7.2 Itô Formula for Linear Combination of Fractional Brownian Motions with \(H_i \in [1/2, 1) \) in Terms of Pathwise Integrals and Itô Integral 183
 2.7.3 The Itô Formula in Terms of Wick Integrals 184
 2.7.4 The Itô Formula for \(H \in (0, 1/2) \) 185
 2.7.5 Itô Formula for Fractional Brownian Fields 186
 2.7.6 The Itô Formula for \(H \in (0, 1) \) in Terms of Isometric Integrals, and Its Applications 189
2.8 The Girsanov Theorem for fBm and Its Applications 191
 2.8.1 The Girsanov Theorem for fBm 191
 2.8.2 When the Conditions of the Girsanov Theorem Are Fulfilled? Differentiability of the Fractional Integrals 193

3 Stochastic Differential Equations Involving Fractional Brownian Motion ... 197
3.1 Stochastic Differential Equations Driven by Fractional Brownian Motion with Pathwise Integrals 197
 3.1.1 Existence and Uniqueness of Solutions: the Results of Nualart and Raşcanu 197
 3.1.2 Norm and Moment Estimates of Solution 202
 3.1.3 Some Other Results on Existence and Uniqueness of Solution of SDE Involving Processes Related to fBm with \((H \in (1/2, 1)) \) ... 204
 3.1.4 Some Properties of the Stochastic Differential Equations with Stationary Coefficients 206
 3.1.5 Semilinear Stochastic Differential Equations Involving Forward Integral w.r.t. fBm 220
 3.1.6 Existence and Uniqueness of Solutions of SDE with Two-Parameter Fractional Brownian Field 223
3.2 The Mixed SDE Involving Both the Wiener Process and fBm .. 225
 3.2.1 The Existence and Uniqueness of the Solution of the Mixed Semilinear SDE 225
 3.2.2 The Existence and Uniqueness of the Solution of the Mixed SDE for fBm with \(H \in (3/4, 1) \) 227
 3.2.3 The Girsanov Theorem and the Measure Transformation for the Mixed Semilinear SDE 238
3.3 Stochastic Differential Equations with Fractional White Noise .. 240
 3.3.1 The Lipschitz and the Growth Conditions on the Negative Norms of Coefficients 240
 3.3.2 Quasilinear SDE with Fractional Noise 241
3.4 The Rate of Convergence of Euler Approximations of Solutions of SDE Involving fBm 243
 3.4.1 Approximation of Pathwise Equations 244
 3.4.2 Approximation of Quasilinear Skorohod-type Equations .. 255
3.5 SDE with the Additive Wiener Integral w.r.t. Fractional Noise .. 262
 3.5.1 Existence of a Weak Solution for Regular Coefficients ... 263
 3.5.2 Existence of a Weak Solution for SDE with Discontinuous Drift 266
 3.5.3 Uniqueness in Law and Pathwise Uniqueness for Regular Coefficients 271
 3.5.4 Existence of a Strong Solution for the Regular Case ... 272
 3.5.5 Existence of a Strong Solution for Discontinuous Drift ... 274
 3.5.6 Estimates of Moments of Solutions for Regular Case and $H \in (0, 1/2)$ 278
 3.5.7 The Estimates of the Norms of the Solution in the Orlicz Spaces 280
 3.5.8 The Distribution of the Supremum of the Process X on $[0, T]$.. 284
 3.5.9 Modulus of Continuity of Solution of Equation Involving Fractional Brownian Motion 287

4 Filtering in Systems with Fractional Brownian Noise 291
 4.1 Optimal Filtering of a Mixed Brownian–Fractional-Brownian Model with Fractional Brownian Observation Noise 291
 4.2 Optimal Filtering in Conditionally Gaussian Linear Systems with Mixed Signal and Fractional Brownian Observation Noise .. 295
 4.3 Optimal Filtering in Systems with Polynomial Fractional Brownian Noise 298

5 Financial Applications of Fractional Brownian Motion 301
 5.1 Discussion of the Arbitrage Problem 301
 5.1.1 Long-range Dependence in Economics and Finance 301
 5.1.2 Arbitrage in “Pure” Fractional Brownian Model. The Original Rogers Approach 302
 5.1.3 Arbitrage in the “Pure” Fractional Model. Results of Shiryaev and Dasgupta 304
 5.1.4 Mixed Brownian–Fractional-Brownian Model: Absence of Arbitrage and Related Topics 305
 5.1.5 Equilibrium of Financial Market. The Fractional Burgers Equation 321
 5.2 The Different Forms of the Black–Scholes Equation 322
 5.2.1 The Black–Scholes Equation for the Mixed Brownian–Fractional-Brownian Model 322
5.2.2 Discussion of the Place of Wick Products and Wick-Itô-Skorohod Integral in the Problems of Arbitrage and Replication in the Fractional Black-Scholes Pricing Model 323

6 Statistical Inference with Fractional Brownian Motion 327
 6.1 Testing Problems for the Density Process for fBm with
 Different Drifts ... 327
 6.1.1 Observations Based on the Whole Trajectory with σ
 and H Known ... 329
 6.1.2 Discretely Observed Trajectory and σ Unknown 331
 6.2 Goodness-of-fit Test ... 335
 6.2.1 Introduction ... 335
 6.2.2 The Whole Trajectory Is Observed and the Parameters
 μ and σ Are Known 335
 6.2.3 Goodness-of-fit Tests with Discrete Observations 337
 6.2.4 On Volatility Estimation 340
 6.2.5 Goodness-of-fit Test with Unknown μ and σ 342
 6.3 Parameter Estimates in the Models Involving fBm 343
 6.3.1 Consistency of the Drift Parameter Estimates in the
 Pure Fractional Brownian Diffusion Model 344
 6.3.2 Consistency of the Drift Parameter Estimates in the
 Mixed Brownian–fractional-Brownian Diffusion Model
 with “Linearly” Dependent W_t and B^H_t 349
 6.3.3 The Properties of Maximum Likelihood Estimates
 in Diffusion Brownian–Fractional-Brownian Models
 with Independent Components 354

A Mandelbrot–van Ness Representation: Some Related Calculations 363

B Approximation of Beta Integrals and Estimation of Kernels 365

References .. 369

Index ... 391