Contents

Part I New concept of cooperation

1 Needs of improved assistant systems ... 3
 1.1 Analysis of the cause of accidents on the road 3
 1.2 Autonomous vehicles as possible solution 5
 1.3 Ways for improving the driving safety 6
 1.3.1 Improvement of the infrastructures 7
 1.3.2 Improvement of the driver capacities 7
 1.3.3 Improvement of the vehicles 7
 1.4 Introduction of assistant systems and inherent problems 8
 1.4.1 Current integration of assistant systems 8
 1.4.2 New issues coming from assistant systems 9
 1.4.3 Behavioral changes with the human supervision 9
 1.4.4 Risks of complacency 9
 1.5 Problem statement and improvements with SPARC 10

2 Adaptive cooperation between driver and assistant system 11
 2.1 Vehicle architecture matching the driver cognition flow 11
 2.2 Horizontal layering integrated into the vehicle 14
 2.3 Overall presentation of the new concept 15
 2.4 Presentation of the concept of adaptive cooperation 16

Part II Executive level as vehicle platform

1 Requirements for the executive level 23
 1.1 Tasks of the executive level 23
 1.2 Integration of the predictive vehicle dynamics model 24
 1.2.1 Selection of methodology for the prediction
 of the vehicle dynamics 24
 1.2.2 Integration of the predictive vehicle dynamics model ... 25
2 Road-tire μ friction coefficient estimation .. 27
 2.1 Analysis of the current methodologies ... 27
 2.2 Predictive camera-based measurement ... 28
 2.2.1 Extraction of the ranges analysis ... 30
 2.2.2 Statistical approach .. 30
 2.2.3 Macroscopic approach .. 33
 2.3 Local microphone-based measurement ... 40
 2.3.1 Measuring the loud-speaker effect of the tire 40
 2.3.2 Frequencies extraction from the collected data 41
 2.3.3 Construction of models ... 43
 2.3.4 Matching of the measures .. 45
 2.4 Local control of the predictive measures 47
 2.5 Pros and cons of the estimation methodology 48

3 Actuators and drive train architecture ... 51
 3.1 Migration strategy to a full safe drive-by-wire platform 51
 3.2 Drive train architecture .. 54
 3.3 Electrical integration with mechanical back-up 55
 3.4 Electrical replication ... 57

4 Vehicle dynamics model .. 59
 4.1 Modeling of the actuators ... 59
 4.1.1 Modeling the dynamics of a unit with a second-order transfer function ... 59
 4.1.2 Non-iterative identification of the dynamics of units with continuous state ... 60
 4.1.3 Identification of the dynamics of the retarder 62
 4.1.4 Iterative identification of the gear and clutch dynamical model .. 62
 4.1.5 Non-iterative identification of the differential model 67
 4.2 Limitation due to electrical power ... 68
 4.2.1 Model of maximal available energy .. 69
 4.2.2 Optimizing the energy capacity ... 69
 4.2.3 Modifying the command to adapt it to the energy level 70
 4.2.4 Pre-compensation of the physical limitations 71
 4.3 Dynamics model ... 72
 4.3.1 Computation of the propulsive forces 73
 4.3.2 Computation of the vehicle dynamics .. 74
 4.4 Use of the dynamics model .. 75

5 Performing the vehicle command .. 77
 5.1 Command range ... 77
 5.2 Inverse computation of the actuators’ command 79
 5.3 Possible extension to a predictive command execution by use of transfer functions .. 80
5.4 Reactive optimization of the command ... 81
 5.4.1 Longitudinal correction .. 81
 5.4.2 Yaw rate correction with electronic stability control 84

Part III Virtual driver for the cooperation

1 Extended middleware for fault-tolerant architecture 91
 1.1 Concept of software redundancy with a multi-agent system 91
 1.2 System management layer ... 93
 1.2.1 Agent-based runtime environment 93
 1.2.2 Use of a blackboard to provide information 95
 1.2.3 Redundant management of the agents 97
 1.3 Integration of fail-tolerant agents 103
 1.3.1 Structure of an agent ... 103
 1.3.2 Redundant computation ... 104

2 Agents derived from the robotic field 107
 2.1 Potential field approach .. 107
 2.1.1 Rejection forces ... 107
 2.1.2 Lane keeping .. 109
 2.1.3 Temporary destination setting 109
 2.1.4 Resulting acceleration .. 109
 2.1.5 Resulting problem .. 110
 2.2 Modified dynamic window ... 111
 2.2.1 Road monitoring .. 112
 2.2.2 Object monitoring .. 113
 2.2.3 Fusion of the two sub-modules 115

3 Tactic agent for speedway/highway 117
 3.1 Fusion of reactive and anticipatory action 117
 3.1.1 Environment categorization ... 118
 3.1.2 Choice of the longitudinal and lateral controllers 120
 3.2 Longitudinal controllers ... 121
 3.2.1 Safety acceleration for the front direction 121
 3.2.2 Distance control for the front direction 122
 3.3 Lateral controllers ... 123
 3.3.1 Safety range for the lane keeping 123
 3.3.2 Extreme lane keeping assistant for other lanes 129
 3.3.3 Safety distance for the lane changing 129
 3.4 Anticipatory action to prevent inappropriate speed 131
 3.4.1 Computation of the maximal safe speed 132
 3.4.2 Extension to multiple paths ... 135
Part IV Adaptive cooperation

1. **Methodology of a fault-tolerant adaptive cooperation**
 - 1.1 Drawbacks of current emergency brake
 - 1.2 Concept of the adaptive cooperation
 - 1.3 Functionalities degradation by use of recovery blocks

2. **Understanding the driver maneuver**
 - 2.1 A priori choices by looking at the history
 - 2.2 Weighting the choices with the command dynamics
 - 2.3 Auto-adaptive detection
 - 2.3.1 Analysis of the probabilistic graph of the maneuver detection
 - 2.3.2 Updating the history

3. **Determination of the driver drowsiness**
 - 3.1 Driver and his/her condition
 - 3.2 Direct non-obtrusive measurement of the drowsiness
 - 3.2.1 Methodology
 - 3.2.2 Problem of reliability
 - 3.3 Combination of multiple indirect measures
 - 3.3.1 Simulation of test drives
 - 3.3.2 From measures to indicators
 - 3.3.3 Setting up of drowsiness references
 - 3.3.4 Combination of the drowsiness indicators
 - 3.3.5 Following the drowsiness evolution

4. **Cooperation at the command level**
 - 4.1 Binary intervention
 - 4.1.1 Concept of intervention
 - 4.1.2 Meshing algorithm
 - 4.1.3 Computation of the path transition
 - 4.1.4 Transition control
 - 4.1.5 Critical analysis
 - 4.2 Fuzzy control
 - 4.2.1 System confidence value
 - 4.2.2 Adaptive weighting
 - 4.2.3 Critical analysis
 - 4.3 Adaptive cooperation
 - 4.3.1 Concept of accepted dangerousness
 - 4.3.2 Extension by use of the accepted dangerousness
 - 4.3.3 Goal-based substitution process
 - 4.3.4 Event-triggered intervention process
Part V Discussion on the proposed concept

6 Concept summary and overview of the functionalities
 6.1 Needs to help the driver in his/her task
 6.2 New vehicle architecture concept
 6.3 Creation of an extended executive level
 6.4 Integration of a virtual driver
 6.5 Concept of adaptive cooperation
 6.6 Results and next steps

7 General conclusion

References

Index