Asymmetric Cell Division

Bearbeitet von
Alvaro Macieira-Coelho

ISBN 978 3 540 69160 0
Format (B x L): 15,5 x 23,5 cm
Gewicht: 555 g

Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Biowissenschaften allgemein > Evolutionsbiologie

Zu Leseprobe

schnell und portofrei erhältlich bei

beck-shop.de
DIE FACHBUCHHANDLUNG

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
Contents

Asymmetric Cell Division in Plant Development 1
 Renze Heidstra
 1 Introduction .. 1
 2 Polarity and Orientation of Cell Division in Plants 3
 3 Asymmetric Cell Divisions in Plant Development 4
 4 Asymmetric Divisions in Embryogenesis 5
 4.1 Division of the Zygote 6
 4.2 Formation of the Lens Shaped Cell from the
 Hypophysis 9
 4.3 Radial Patterning 11
 5 Post-embryonic Asymmetric Cell Division 12
 5.1 Radial Patterning: Endodermis/Cortex Formation 13
 5.2 Stem Cell Divisions 15
 5.3 Lateral Root Initiation 16
 5.4 Stomata ... 18
 5.5 Pollen Development 21
 6 Summary .. 23
 References ... 28

**Asymmetric Cell Division – How Flowering Plant Cells Get
Their Unique Identity** 39
 R.M. Ranganath
 1 Introduction .. 39
 2 Embryo Development 40
 3 Stem Cells in Flowering Plants 42
 3.1 Shoot Apical Meristem (SAM) 43
 3.2 Root Apical Meristem (RAM) 44
 4 Formation of Lateral Organs 45
 4.1 Epidermis ... 46
 4.2 Vascular Differentiation 46
 5 Gametogenesis 48
 5.1 Microsporogenesis and Male Gametophyte
 Development 48
 5.2 Megasporogenesis and Female Gametophyte
 Development 51
 6 Endosperm Development 52
 6.1 Cereal Endosperm 52
 7 Future Prospects 53
 References ... 54
4 Asymmetric Meiotic Cell Division Leading to the
Formation of Unequal Sized Daughter Cells 108
 4.1 Meiotic Spindle Positioning 108
 4.1.1 Molecular Mechanisms 111
 4.2 Cortical Asymmetry 112
5 Conclusions and Perspectives 114
References .. 115

Asymmetric Cell Division During Brain Morphogenesis 121
Takaki Miyata
1 Introduction .. 121
 1.1 Applicability of Drosophila Models for
Vertebrate Brain Formation 121
 1.2 Apical-basal Divisions are Insufficient to Generate
Solely Asymmetric Daughter Cell Output 122
 1.3 Diverse Roles for Vertebrate Numb 124
 1.4 Aims of this Review 126
2 Cytogenesis During Mammalian Cerebral Cortical
Development ... 126
 2.1 The Neural “Germinal Zone” is a Thick
Pseudostratified Neuroepithelium 126
 2.2 Complexity of Mammalian Germinal Zone and
Asymmetric Output ... 127
 2.3 Lessons from Time-lapse Lineage-analysis Studies:
Are All Divisions “Asymmetric”? 127
 2.3.1 Lineage Trees in Low Cell-density
Monolayer Culture 127
 2.3.2 Four-cell Clones in Slice Culture 128
 2.3.3 Morphological Asymmetry in
Surface-dividing Cells 130
3 Links Between Cell Cycle Progression, Nuclear Migration, and
Mitotic Fate Choice in Asymmetric P/P Divisions 131
 3.1 Neuronal-lineage Choice of a Progenitor Cell
Precedes its Departure from the Apical Surface 131
 3.2 Neuronal-lineage Choice is Coordinated with
Cell Cycle Inhibition 133
 3.3 Is Symmetry Broken During G1 Phase or Earlier? 133
4 Reevaluation of the P/N Division by Analogy with the
Asymmetric P/P Division 135
 4.1 When Does a Surface-born Daughter Cell
Become a Neuron? .. 135
 4.2 A “Moratorium” Model for Asymmetric Daughter-cell
Output from the Apical Surface 136
5 Perspective ... 137
References .. 138
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generating Asymmetry: With and Without Self-Renewal.</td>
</tr>
<tr>
<td>Ivana Gaziova and Krishna Moorthi Bhat</td>
</tr>
<tr>
<td>1 Introduction</td>
</tr>
<tr>
<td>1.1 Asymmetric Division in Stem Cells</td>
</tr>
<tr>
<td>1.2 The Drosophila CNS as a Model to Study Asymmetric Divisions</td>
</tr>
<tr>
<td>1.3 NB4-2→GMC-1→RP2/sib Lineage as a Model to Study Asymmetric Division</td>
</tr>
<tr>
<td>2 Terminal Asymmetric Division</td>
</tr>
<tr>
<td>3 Self-Renewing Asymmetric Division</td>
</tr>
<tr>
<td>3.1 Formation of Polarity in Embryonic NBs</td>
</tr>
<tr>
<td>3.2 Mitimere and Nubbin Regulate Self-Renewing Asymmetric Divisions</td>
</tr>
<tr>
<td>3.3 Cyclin E in NB Division</td>
</tr>
<tr>
<td>4 Embryonic Neuronal Lineages that Require Close Examination to Gain Further Insight into Asymmetric Division</td>
</tr>
<tr>
<td>4.1 MP2→dMP2/vMP2 Lineage</td>
</tr>
<tr>
<td>4.2 NB7-3 Lineage</td>
</tr>
<tr>
<td>5 Post-Embryonic CNS NBs and Self-Renewing Asymmetric Division</td>
</tr>
<tr>
<td>6 Conclusions</td>
</tr>
<tr>
<td>Cell Commitment by Asymmetric Division and Immune System Involvement</td>
</tr>
<tr>
<td>Antonin Bukovsky</td>
</tr>
<tr>
<td>1 Introduction</td>
</tr>
<tr>
<td>2 Asymmetric Division of Estrogen Responsive Cells</td>
</tr>
<tr>
<td>2.1 Human Placental Trophoblast</td>
</tr>
<tr>
<td>2.1.1 Asymmetric Division of Villous CT Cells and ERA Segregation</td>
</tr>
<tr>
<td>2.2 Conclusion – Asymmetric Division of Estrogen Responsive Cells</td>
</tr>
<tr>
<td>3 Asymmetric Division During Initiation of Oogenesis in Fetal and Adult Human Ovaries</td>
</tr>
<tr>
<td>3.1 Ovarian Surface Epithelium Stem Cells in Human Fetal Ovaries</td>
</tr>
<tr>
<td>3.1.1 Origin of Primitive Granulosa Cells from Proliferating Ovarian Surface Epithelium Stem Cells</td>
</tr>
<tr>
<td>3.1.2 Origin of Germ Cells by Asymmetric Division of OSE Stem Cells</td>
</tr>
<tr>
<td>3.1.3 Monocytes and T Lymphocytes Accompany Asymmetric Division of OSE Stem Cells in Human Fetal Ovaries</td>
</tr>
</tbody>
</table>
3.1.4 Role of Rete Ovarii ... 190
3.1.5 Conclusion on the Role of OSE in Human Fetal Ovaries 190

3.2 OSE Stem Cells in Adult Human Ovaries 191
 3.2.1 Origin of Granulosa Cell Nests from OSE in Adult Ovaries 191
 3.2.2 Origin of Germ Cells in Adult Ovaries by Asymmetric division of OSE Stem Cells ... 191
 3.2.3 Monocyte-derived Cells and T Lymphocytes Accompany Asymmetric Division of OSE Stem Cells and Migration of Germ Cells in Adult Human Ovaries ... 193
 3.2.4 Thymus and Reproduction .. 198
 3.2.5 Incomplete Asymmetric Division and Nuclear Endoreplication of Germ Cells ... 198
 3.2.6 Conclusion on the Role of Ovarian Surface Epithelium in Adult Human Ovaries ... 199

References ... 200

Asymmetric Stem Cell Division in Development and Cancer 205
Emmanuel Caussinus and Frank Hirth

1 Introduction ... 206
2 Stem Cells in Development ... 206
 2.1 Stem and Progenitor Cells in Drosophila Neurogenesis 208
 2.2 Asymmetric Stem Cell Division in the Embryonic CNS of Drosophila ... 209
 2.3 Cell Polarity During Postembryonic Stem Cell Division in the Drosophila CNS ... 211

3 Malignant Neoplasm of Genetic Origin in Drosophila 213
 3.1 Induction of Tumor Growth by Altered Stem Cell Division in Drosophila ... 214
 3.2 Drosophila Stem Cell Self-Renewal and Tumor Suppression 215
 3.3 Induction of Tumor Growth by Impaired Progenitor Cell Differentiation in Drosophila ... 218

4 Altered Stem and Progenitor Cell Self-Renewal and Cancer Stem Cells ... 220
5 Conclusion .. 222
References .. 222

Asymmetric Distribution of DNA Between Daughter Cells with Final Symmetry Breaking During Aging of Human Fibroblasts 227
Alvaro Macieira-Coelho

1 Drift of Cell Function Through Serial Divisions 227
2 Structural Reorganization of Chromatin Fibers 230